testing all three solution strategies for test_co2brine_ptflash and also, a refrence result comparison is added

This commit is contained in:
Trine Mykkeltvedt 2022-06-30 13:56:55 +02:00
parent dd52b90564
commit 1d2db38172
3 changed files with 169 additions and 57 deletions

View File

@ -1,3 +1,29 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
Copyright 2022 SINTEF Digital, Mathematics and Cybernetics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
#ifndef OPM_CO2BRINEFLUIDSYSTEM_HH
#define OPM_CO2BRINEFLUIDSYSTEM_HH

View File

@ -190,7 +190,7 @@ public:
case gasPhaseIdx: return gasPhaseParams_.getaCache(compIdx,compJIdx);
default:
throw std::logic_error("The aCache() parameter is only defined for "
"oil phase");
"oil and gas phase");
};
}

View File

@ -1,8 +1,8 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
Copyright 2022 NORCE.
Copyright 2022 SINTEF Digital, Mathematics and Cybernetics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
@ -31,116 +31,202 @@
#include <opm/material/constraintsolvers/PTFlash.hpp>
#include <opm/material/fluidsystems/Co2BrineFluidSystem.hh>
#include <opm/material/densead/Evaluation.hpp>
#include <opm/material/constraintsolvers/ComputeFromReferencePhase.hpp>
#include <opm/material/fluidstates/CompositionalFluidState.hpp>
#include <opm/material/fluidmatrixinteractions/LinearMaterial.hpp>
#include <dune/common/parallel/mpihelper.hh>
// the following include should be removed later
// #include <opm/material/fluidsystems/chifluid/chiwoms.h>
void testCo2BrineFlash()
#include <stdexcept>
// It is a two component system
using Scalar = double;
using FluidSystem = Opm::Co2BrineFluidSystem<Scalar>;
constexpr auto numComponents = FluidSystem::numComponents;
using Evaluation = Opm::DenseAd::Evaluation<double, numComponents>;
typedef Dune::FieldVector<Evaluation, numComponents> ComponentVector;
typedef Opm::CompositionalFluidState<Evaluation, FluidSystem> FluidState;
bool result_okay(const FluidState& fluid_state);
bool testPTFlash(const std::string& flash_twophase_method)
{
using Scalar = double;
using FluidSystem = Opm::Co2BrineFluidSystem<Scalar>;
constexpr auto numComponents = FluidSystem::numComponents;
using Evaluation = Opm::DenseAd::Evaluation<double, numComponents>;
typedef Dune::FieldVector<Evaluation, numComponents> ComponentVector;
typedef Opm::CompositionalFluidState<Evaluation, FluidSystem> FluidState;
// input
// Initial: the primary variables are, pressure, molar fractions of the first and second component
Evaluation p_init = Evaluation::createVariable(10e5, 0); // 10 bar
ComponentVector comp;
comp[0] = Evaluation::createVariable(0.5, 1);
comp[1] = 1. - comp[0];//Evaluation::createVariable(0.1, 1);
//comp[2] = 0;//1. - comp[0] - comp[1];
comp[1] = 1. - comp[0];
// TODO: not sure whether the saturation matter here.
ComponentVector sat;
// We assume that currently everything is in the oil phase
sat[0] = 1.0; sat[1] = 1.0-sat[0];
// TODO: should we put the derivative against the temperature here?
Scalar temp = 300.0;
// From co2-compositional branch, it uses
// typedef typename FluidSystem::template ParameterCache<Scalar> ParameterCache;
FluidState fs;
// TODO: no capillary pressure for now
fs.setPressure(FluidSystem::oilPhaseIdx, p_init);
fs.setPressure(FluidSystem::gasPhaseIdx, p_init);
// FluidState will be the input for the flash calculation
FluidState fluid_state;
fluid_state.setPressure(FluidSystem::oilPhaseIdx, p_init);
fluid_state.setPressure(FluidSystem::gasPhaseIdx, p_init);
fs.setMoleFraction(FluidSystem::oilPhaseIdx, FluidSystem::Comp0Idx, comp[0]);
fs.setMoleFraction(FluidSystem::oilPhaseIdx, FluidSystem::Comp1Idx, comp[1]);
//fs.setMoleFraction(FluidSystem::oilPhaseIdx, FluidSystem::Comp2Idx, comp[2]);
fluid_state.setMoleFraction(FluidSystem::oilPhaseIdx, FluidSystem::Comp0Idx, comp[0]);
fluid_state.setMoleFraction(FluidSystem::oilPhaseIdx, FluidSystem::Comp1Idx, comp[1]);
fs.setMoleFraction(FluidSystem::gasPhaseIdx, FluidSystem::Comp0Idx, comp[0]);
fs.setMoleFraction(FluidSystem::gasPhaseIdx, FluidSystem::Comp1Idx, comp[1]);
//fs.setMoleFraction(FluidSystem::gasPhaseIdx, FluidSystem::Comp2Idx, comp[2]);
fluid_state.setMoleFraction(FluidSystem::gasPhaseIdx, FluidSystem::Comp0Idx, comp[0]);
fluid_state.setMoleFraction(FluidSystem::gasPhaseIdx, FluidSystem::Comp1Idx, comp[1]);
// It is used here only for calculate the z
fs.setSaturation(FluidSystem::oilPhaseIdx, sat[0]);
fs.setSaturation(FluidSystem::gasPhaseIdx, sat[1]);
fluid_state.setSaturation(FluidSystem::oilPhaseIdx, sat[0]);
fluid_state.setSaturation(FluidSystem::gasPhaseIdx, sat[1]);
fs.setTemperature(temp);
fluid_state.setTemperature(temp);
// ParameterCache paramCache;
{
typename FluidSystem::template ParameterCache<Evaluation> paramCache;
paramCache.updatePhase(fs, FluidSystem::oilPhaseIdx);
paramCache.updatePhase(fs, FluidSystem::gasPhaseIdx);
fs.setDensity(FluidSystem::oilPhaseIdx, FluidSystem::density(fs, paramCache, FluidSystem::oilPhaseIdx));
fs.setDensity(FluidSystem::gasPhaseIdx, FluidSystem::density(fs, paramCache, FluidSystem::gasPhaseIdx));
paramCache.updatePhase(fluid_state, FluidSystem::oilPhaseIdx);
paramCache.updatePhase(fluid_state, FluidSystem::gasPhaseIdx);
fluid_state.setDensity(FluidSystem::oilPhaseIdx, FluidSystem::density(fluid_state, paramCache, FluidSystem::oilPhaseIdx));
fluid_state.setDensity(FluidSystem::gasPhaseIdx, FluidSystem::density(fluid_state, paramCache, FluidSystem::gasPhaseIdx));
}
ComponentVector zInit(0.); // TODO; zInit needs to be normalized.
ComponentVector z(0.); // TODO; z needs to be normalized.
{
Scalar sumMoles = 0.0;
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) {
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
Scalar tmp = Opm::getValue(fs.molarity(phaseIdx, compIdx) * fs.saturation(phaseIdx));
zInit[compIdx] += Opm::max(tmp, 1e-8);
Scalar tmp = Opm::getValue(fluid_state.molarity(phaseIdx, compIdx) * fluid_state.saturation(phaseIdx));
z[compIdx] += Opm::max(tmp, 1e-8);
sumMoles += tmp;
}
}
zInit /= sumMoles;
// initialize the derivatives
// TODO: the derivative eventually should be from the reservoir flow equations
z /= sumMoles;
// p And z is the primary variables
Evaluation z_last = 1.;
for (unsigned compIdx = 0; compIdx < numComponents - 1; ++compIdx) {
zInit[compIdx] = Evaluation::createVariable(Opm::getValue(zInit[compIdx]), compIdx + 1);
z_last -= zInit[compIdx];
z[compIdx] = Evaluation::createVariable(Opm::getValue(z[compIdx]), int(compIdx) + 1);
z_last -= z[compIdx];
}
zInit[numComponents - 1] = z_last;
z[numComponents - 1] = z_last;
}
// TODO: only, p, z need the derivatives.
const double flash_tolerance = 1.e-12; // just to test the setup in co2-compositional
const int flash_verbosity = 1;
//const std::string flash_twophase_method = "ssi"; // "ssi"
//const std::string flash_twophase_method = "newton";
const std::string flash_twophase_method = "newton";
// TODO: should we set these?
// Set initial K and L
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
const Evaluation Ktmp = fs.wilsonK_(compIdx);
fs.setKvalue(compIdx, Ktmp);
const Evaluation Ktmp = fluid_state.wilsonK_(compIdx);
fluid_state.setKvalue(compIdx, Ktmp);
}
const Evaluation Ltmp = 1.;
fs.setLvalue(Ltmp);
fluid_state.setLvalue(Ltmp);
const int spatialIdx = 0;
using Flash = Opm::PTFlash<double, FluidSystem>;
// TODO: here the zInit does not have the proper derivatives
Flash::solve(fs, zInit, spatialIdx, flash_verbosity, flash_twophase_method, flash_tolerance);
Flash::solve(fluid_state, z, spatialIdx, flash_verbosity, flash_twophase_method, flash_tolerance);
return result_okay(fluid_state);
}
bool result_okay(const FluidState& fluid_state)
{
bool res_okay = true;
auto almost_equal = [](const double x, const double y, const double rel_tol = 2.e-3, const double abs_tol = 1.e-3)->bool {
return std::fabs(x - y) <= rel_tol * std::fabs(x + y) * 2 || std::fabs(x - y) < abs_tol;
};
auto eval_almost_equal = [almost_equal](const Evaluation& val, const Evaluation& ref) -> bool {
bool equal_okay = true;
if (!almost_equal(val.value(), ref.value())) {
equal_okay = false;
std::cout << " the value are different with " << val.value() << " against the reference " << ref.value() << std::endl;
}
for (int i = 0; i < val.size(); ++i) {
if (!almost_equal(val.derivative(i), ref.derivative(i))) {
equal_okay = false;
std::cout << " the " << i << "th derivative is different with value " << val.derivative(i) << " against the reference " << ref.derivative(i) << std::endl;
}
}
return equal_okay;
};
ComponentVector x, y;
const Evaluation L = fluid_state.L();
for (unsigned comp_idx = 0; comp_idx < numComponents; ++comp_idx) {
x[comp_idx] = fluid_state.moleFraction(FluidSystem::oilPhaseIdx, comp_idx);
y[comp_idx] = fluid_state.moleFraction(FluidSystem::gasPhaseIdx, comp_idx);
}
Evaluation ref_L = 1 - 0.5013878578252918;
ref_L.setDerivative(0, -0.00010420367632860657);
ref_L.setDerivative(1, -1.0043436395393446);
ComponentVector ref_x;
ref_x[0].setValue(0.0007805714232572864);
ref_x[0].setDerivative(0, 4.316797623360392e-6);
ref_x[0].setDerivative(1, 1.0842021724855044e-19);
ref_x[1].setValue(0.9992194285767426);
ref_x[1].setDerivative(0, -4.316797623360802e-6);
ref_x[1].setDerivative(1, -2.220446049250313e-16);
ComponentVector ref_y;
ref_y[0].setValue(0.9964557174909056);
ref_y[0].setDerivative(0, -0.00021122453746465807);
ref_y[0].setDerivative(1, -2.220446049250313e-16);
ref_y[1].setValue(0.003544282509094506);
ref_y[1].setDerivative(0, -3.0239852847431828e-9);
ref_y[1].setDerivative(1, -8.673617379884035e-19);
for (unsigned comp_idx = 0; comp_idx < numComponents; ++comp_idx) {
if (!eval_almost_equal(x[comp_idx], ref_x[comp_idx])) {
res_okay = false;
std::cout << " the " << comp_idx << "th x does not match" << std::endl;
}
if (!eval_almost_equal(y[comp_idx], ref_y[comp_idx])) {
res_okay = false;
std::cout << " the " << comp_idx << "th x does not match" << std::endl;
}
}
if (!eval_almost_equal(L, ref_L)) {
res_okay = false;
std::cout << " the L does not match" << std::endl;
}
// TODO: we should also check densities, viscosities, saturations and so on
return res_okay;
}
int main(int argc, char **argv)
{
Dune::MPIHelper::instance(argc, argv);
bool test_passed = true;
testCo2BrineFlash();
std::vector<std::string> test_methods {"newton", "ssi", "ssi+newton"};
for (const auto& method : test_methods) {
if (!testPTFlash(method) ) {
std::cout << method << " solution for PTFlash failed " << std::endl;
test_passed = false;
} else {
std::cout << method << " solution for PTFlash passed " << std::endl;
}
}
if (!test_passed) {
throw std::runtime_error(" PTFlash tests failed");
}
return 0;
}
}