testing all three solution strategies for test_co2brine_ptflash and also, a refrence result comparison is added
This commit is contained in:
parent
dd52b90564
commit
1d2db38172
@ -1,3 +1,29 @@
|
||||
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
||||
// vi: set et ts=4 sw=4 sts=4:
|
||||
/*
|
||||
Copyright 2022 SINTEF Digital, Mathematics and Cybernetics.
|
||||
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
Consult the COPYING file in the top-level source directory of this
|
||||
module for the precise wording of the license and the list of
|
||||
copyright holders.
|
||||
*/
|
||||
|
||||
|
||||
#ifndef OPM_CO2BRINEFLUIDSYSTEM_HH
|
||||
#define OPM_CO2BRINEFLUIDSYSTEM_HH
|
||||
|
||||
|
@ -190,7 +190,7 @@ public:
|
||||
case gasPhaseIdx: return gasPhaseParams_.getaCache(compIdx,compJIdx);
|
||||
default:
|
||||
throw std::logic_error("The aCache() parameter is only defined for "
|
||||
"oil phase");
|
||||
"oil and gas phase");
|
||||
};
|
||||
}
|
||||
|
||||
|
@ -1,8 +1,8 @@
|
||||
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
||||
// vi: set et ts=4 sw=4 sts=4:
|
||||
/*
|
||||
Copyright 2022 NORCE.
|
||||
|
||||
Copyright 2022 SINTEF Digital, Mathematics and Cybernetics.
|
||||
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
@ -31,116 +31,202 @@
|
||||
|
||||
#include <opm/material/constraintsolvers/PTFlash.hpp>
|
||||
#include <opm/material/fluidsystems/Co2BrineFluidSystem.hh>
|
||||
|
||||
#include <opm/material/densead/Evaluation.hpp>
|
||||
#include <opm/material/constraintsolvers/ComputeFromReferencePhase.hpp>
|
||||
#include <opm/material/fluidstates/CompositionalFluidState.hpp>
|
||||
#include <opm/material/fluidmatrixinteractions/LinearMaterial.hpp>
|
||||
|
||||
#include <dune/common/parallel/mpihelper.hh>
|
||||
// the following include should be removed later
|
||||
// #include <opm/material/fluidsystems/chifluid/chiwoms.h>
|
||||
|
||||
void testCo2BrineFlash()
|
||||
#include <stdexcept>
|
||||
|
||||
// It is a two component system
|
||||
using Scalar = double;
|
||||
using FluidSystem = Opm::Co2BrineFluidSystem<Scalar>;
|
||||
|
||||
constexpr auto numComponents = FluidSystem::numComponents;
|
||||
using Evaluation = Opm::DenseAd::Evaluation<double, numComponents>;
|
||||
typedef Dune::FieldVector<Evaluation, numComponents> ComponentVector;
|
||||
typedef Opm::CompositionalFluidState<Evaluation, FluidSystem> FluidState;
|
||||
|
||||
bool result_okay(const FluidState& fluid_state);
|
||||
|
||||
bool testPTFlash(const std::string& flash_twophase_method)
|
||||
{
|
||||
using Scalar = double;
|
||||
using FluidSystem = Opm::Co2BrineFluidSystem<Scalar>;
|
||||
|
||||
constexpr auto numComponents = FluidSystem::numComponents;
|
||||
using Evaluation = Opm::DenseAd::Evaluation<double, numComponents>;
|
||||
typedef Dune::FieldVector<Evaluation, numComponents> ComponentVector;
|
||||
typedef Opm::CompositionalFluidState<Evaluation, FluidSystem> FluidState;
|
||||
|
||||
// input
|
||||
// Initial: the primary variables are, pressure, molar fractions of the first and second component
|
||||
Evaluation p_init = Evaluation::createVariable(10e5, 0); // 10 bar
|
||||
ComponentVector comp;
|
||||
comp[0] = Evaluation::createVariable(0.5, 1);
|
||||
comp[1] = 1. - comp[0];//Evaluation::createVariable(0.1, 1);
|
||||
//comp[2] = 0;//1. - comp[0] - comp[1];
|
||||
comp[1] = 1. - comp[0];
|
||||
|
||||
// TODO: not sure whether the saturation matter here.
|
||||
ComponentVector sat;
|
||||
// We assume that currently everything is in the oil phase
|
||||
sat[0] = 1.0; sat[1] = 1.0-sat[0];
|
||||
// TODO: should we put the derivative against the temperature here?
|
||||
Scalar temp = 300.0;
|
||||
// From co2-compositional branch, it uses
|
||||
// typedef typename FluidSystem::template ParameterCache<Scalar> ParameterCache;
|
||||
|
||||
FluidState fs;
|
||||
// TODO: no capillary pressure for now
|
||||
|
||||
fs.setPressure(FluidSystem::oilPhaseIdx, p_init);
|
||||
fs.setPressure(FluidSystem::gasPhaseIdx, p_init);
|
||||
// FluidState will be the input for the flash calculation
|
||||
FluidState fluid_state;
|
||||
fluid_state.setPressure(FluidSystem::oilPhaseIdx, p_init);
|
||||
fluid_state.setPressure(FluidSystem::gasPhaseIdx, p_init);
|
||||
|
||||
fs.setMoleFraction(FluidSystem::oilPhaseIdx, FluidSystem::Comp0Idx, comp[0]);
|
||||
fs.setMoleFraction(FluidSystem::oilPhaseIdx, FluidSystem::Comp1Idx, comp[1]);
|
||||
//fs.setMoleFraction(FluidSystem::oilPhaseIdx, FluidSystem::Comp2Idx, comp[2]);
|
||||
fluid_state.setMoleFraction(FluidSystem::oilPhaseIdx, FluidSystem::Comp0Idx, comp[0]);
|
||||
fluid_state.setMoleFraction(FluidSystem::oilPhaseIdx, FluidSystem::Comp1Idx, comp[1]);
|
||||
|
||||
fs.setMoleFraction(FluidSystem::gasPhaseIdx, FluidSystem::Comp0Idx, comp[0]);
|
||||
fs.setMoleFraction(FluidSystem::gasPhaseIdx, FluidSystem::Comp1Idx, comp[1]);
|
||||
//fs.setMoleFraction(FluidSystem::gasPhaseIdx, FluidSystem::Comp2Idx, comp[2]);
|
||||
fluid_state.setMoleFraction(FluidSystem::gasPhaseIdx, FluidSystem::Comp0Idx, comp[0]);
|
||||
fluid_state.setMoleFraction(FluidSystem::gasPhaseIdx, FluidSystem::Comp1Idx, comp[1]);
|
||||
|
||||
// It is used here only for calculate the z
|
||||
fs.setSaturation(FluidSystem::oilPhaseIdx, sat[0]);
|
||||
fs.setSaturation(FluidSystem::gasPhaseIdx, sat[1]);
|
||||
fluid_state.setSaturation(FluidSystem::oilPhaseIdx, sat[0]);
|
||||
fluid_state.setSaturation(FluidSystem::gasPhaseIdx, sat[1]);
|
||||
|
||||
fs.setTemperature(temp);
|
||||
fluid_state.setTemperature(temp);
|
||||
|
||||
// ParameterCache paramCache;
|
||||
{
|
||||
typename FluidSystem::template ParameterCache<Evaluation> paramCache;
|
||||
paramCache.updatePhase(fs, FluidSystem::oilPhaseIdx);
|
||||
paramCache.updatePhase(fs, FluidSystem::gasPhaseIdx);
|
||||
fs.setDensity(FluidSystem::oilPhaseIdx, FluidSystem::density(fs, paramCache, FluidSystem::oilPhaseIdx));
|
||||
fs.setDensity(FluidSystem::gasPhaseIdx, FluidSystem::density(fs, paramCache, FluidSystem::gasPhaseIdx));
|
||||
paramCache.updatePhase(fluid_state, FluidSystem::oilPhaseIdx);
|
||||
paramCache.updatePhase(fluid_state, FluidSystem::gasPhaseIdx);
|
||||
fluid_state.setDensity(FluidSystem::oilPhaseIdx, FluidSystem::density(fluid_state, paramCache, FluidSystem::oilPhaseIdx));
|
||||
fluid_state.setDensity(FluidSystem::gasPhaseIdx, FluidSystem::density(fluid_state, paramCache, FluidSystem::gasPhaseIdx));
|
||||
}
|
||||
|
||||
ComponentVector zInit(0.); // TODO; zInit needs to be normalized.
|
||||
ComponentVector z(0.); // TODO; z needs to be normalized.
|
||||
{
|
||||
Scalar sumMoles = 0.0;
|
||||
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) {
|
||||
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
|
||||
Scalar tmp = Opm::getValue(fs.molarity(phaseIdx, compIdx) * fs.saturation(phaseIdx));
|
||||
zInit[compIdx] += Opm::max(tmp, 1e-8);
|
||||
Scalar tmp = Opm::getValue(fluid_state.molarity(phaseIdx, compIdx) * fluid_state.saturation(phaseIdx));
|
||||
z[compIdx] += Opm::max(tmp, 1e-8);
|
||||
sumMoles += tmp;
|
||||
}
|
||||
}
|
||||
zInit /= sumMoles;
|
||||
// initialize the derivatives
|
||||
// TODO: the derivative eventually should be from the reservoir flow equations
|
||||
z /= sumMoles;
|
||||
// p And z is the primary variables
|
||||
Evaluation z_last = 1.;
|
||||
for (unsigned compIdx = 0; compIdx < numComponents - 1; ++compIdx) {
|
||||
zInit[compIdx] = Evaluation::createVariable(Opm::getValue(zInit[compIdx]), compIdx + 1);
|
||||
z_last -= zInit[compIdx];
|
||||
z[compIdx] = Evaluation::createVariable(Opm::getValue(z[compIdx]), int(compIdx) + 1);
|
||||
z_last -= z[compIdx];
|
||||
}
|
||||
zInit[numComponents - 1] = z_last;
|
||||
z[numComponents - 1] = z_last;
|
||||
}
|
||||
|
||||
// TODO: only, p, z need the derivatives.
|
||||
const double flash_tolerance = 1.e-12; // just to test the setup in co2-compositional
|
||||
const int flash_verbosity = 1;
|
||||
//const std::string flash_twophase_method = "ssi"; // "ssi"
|
||||
//const std::string flash_twophase_method = "newton";
|
||||
const std::string flash_twophase_method = "newton";
|
||||
|
||||
// TODO: should we set these?
|
||||
// Set initial K and L
|
||||
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
|
||||
const Evaluation Ktmp = fs.wilsonK_(compIdx);
|
||||
fs.setKvalue(compIdx, Ktmp);
|
||||
const Evaluation Ktmp = fluid_state.wilsonK_(compIdx);
|
||||
fluid_state.setKvalue(compIdx, Ktmp);
|
||||
}
|
||||
const Evaluation Ltmp = 1.;
|
||||
fs.setLvalue(Ltmp);
|
||||
fluid_state.setLvalue(Ltmp);
|
||||
|
||||
const int spatialIdx = 0;
|
||||
using Flash = Opm::PTFlash<double, FluidSystem>;
|
||||
// TODO: here the zInit does not have the proper derivatives
|
||||
Flash::solve(fs, zInit, spatialIdx, flash_verbosity, flash_twophase_method, flash_tolerance);
|
||||
Flash::solve(fluid_state, z, spatialIdx, flash_verbosity, flash_twophase_method, flash_tolerance);
|
||||
|
||||
return result_okay(fluid_state);
|
||||
}
|
||||
|
||||
bool result_okay(const FluidState& fluid_state)
|
||||
{
|
||||
bool res_okay = true;
|
||||
auto almost_equal = [](const double x, const double y, const double rel_tol = 2.e-3, const double abs_tol = 1.e-3)->bool {
|
||||
return std::fabs(x - y) <= rel_tol * std::fabs(x + y) * 2 || std::fabs(x - y) < abs_tol;
|
||||
};
|
||||
|
||||
auto eval_almost_equal = [almost_equal](const Evaluation& val, const Evaluation& ref) -> bool {
|
||||
bool equal_okay = true;
|
||||
if (!almost_equal(val.value(), ref.value())) {
|
||||
equal_okay = false;
|
||||
std::cout << " the value are different with " << val.value() << " against the reference " << ref.value() << std::endl;
|
||||
}
|
||||
|
||||
for (int i = 0; i < val.size(); ++i) {
|
||||
if (!almost_equal(val.derivative(i), ref.derivative(i))) {
|
||||
equal_okay = false;
|
||||
std::cout << " the " << i << "th derivative is different with value " << val.derivative(i) << " against the reference " << ref.derivative(i) << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
return equal_okay;
|
||||
};
|
||||
|
||||
ComponentVector x, y;
|
||||
const Evaluation L = fluid_state.L();
|
||||
for (unsigned comp_idx = 0; comp_idx < numComponents; ++comp_idx) {
|
||||
x[comp_idx] = fluid_state.moleFraction(FluidSystem::oilPhaseIdx, comp_idx);
|
||||
y[comp_idx] = fluid_state.moleFraction(FluidSystem::gasPhaseIdx, comp_idx);
|
||||
}
|
||||
|
||||
|
||||
Evaluation ref_L = 1 - 0.5013878578252918;
|
||||
ref_L.setDerivative(0, -0.00010420367632860657);
|
||||
ref_L.setDerivative(1, -1.0043436395393446);
|
||||
|
||||
ComponentVector ref_x;
|
||||
ref_x[0].setValue(0.0007805714232572864);
|
||||
ref_x[0].setDerivative(0, 4.316797623360392e-6);
|
||||
ref_x[0].setDerivative(1, 1.0842021724855044e-19);
|
||||
|
||||
ref_x[1].setValue(0.9992194285767426);
|
||||
ref_x[1].setDerivative(0, -4.316797623360802e-6);
|
||||
ref_x[1].setDerivative(1, -2.220446049250313e-16);
|
||||
|
||||
ComponentVector ref_y;
|
||||
ref_y[0].setValue(0.9964557174909056);
|
||||
ref_y[0].setDerivative(0, -0.00021122453746465807);
|
||||
ref_y[0].setDerivative(1, -2.220446049250313e-16);
|
||||
|
||||
ref_y[1].setValue(0.003544282509094506);
|
||||
ref_y[1].setDerivative(0, -3.0239852847431828e-9);
|
||||
ref_y[1].setDerivative(1, -8.673617379884035e-19);
|
||||
|
||||
|
||||
for (unsigned comp_idx = 0; comp_idx < numComponents; ++comp_idx) {
|
||||
if (!eval_almost_equal(x[comp_idx], ref_x[comp_idx])) {
|
||||
res_okay = false;
|
||||
std::cout << " the " << comp_idx << "th x does not match" << std::endl;
|
||||
}
|
||||
if (!eval_almost_equal(y[comp_idx], ref_y[comp_idx])) {
|
||||
res_okay = false;
|
||||
std::cout << " the " << comp_idx << "th x does not match" << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
if (!eval_almost_equal(L, ref_L)) {
|
||||
res_okay = false;
|
||||
std::cout << " the L does not match" << std::endl;
|
||||
}
|
||||
|
||||
// TODO: we should also check densities, viscosities, saturations and so on
|
||||
|
||||
return res_okay;
|
||||
}
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
Dune::MPIHelper::instance(argc, argv);
|
||||
bool test_passed = true;
|
||||
|
||||
testCo2BrineFlash();
|
||||
std::vector<std::string> test_methods {"newton", "ssi", "ssi+newton"};
|
||||
|
||||
for (const auto& method : test_methods) {
|
||||
if (!testPTFlash(method) ) {
|
||||
std::cout << method << " solution for PTFlash failed " << std::endl;
|
||||
test_passed = false;
|
||||
} else {
|
||||
std::cout << method << " solution for PTFlash passed " << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
if (!test_passed) {
|
||||
throw std::runtime_error(" PTFlash tests failed");
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue
Block a user