Use Static D-Factor Correlation Coefficient

This commit removes the porosity parameter from the getDFactor()
member function.  We then reimplement the Dake model correlation in
terms of the Connection's 'static_dfac_corr_coeff' since this
bypasses the exponentiation and, in the future, will simplify
restarting a simulation run using the WDFACCOR keyword.

While here, also split out the implementation of the connection
level D-factor to a helper function and make another helper function
for scaling a well-level D-factor to a connection-level value.
This commit is contained in:
Bård Skaflestad 2023-11-10 16:19:30 +01:00
parent e0fe776e2e
commit 3dc49856ee
3 changed files with 112 additions and 50 deletions

View File

@ -104,8 +104,6 @@ namespace Opm {
/// Serialisation test object
static WDFAC serializationTestObject();
double getDFactor(const Connection& connection, double mu, double rho, double phi) const;
/// Configure D-factor calculation from well-level D-factor
/// description (keyword 'WDFAC')
///
@ -137,6 +135,20 @@ namespace Opm {
/// COMPDAT.
void updateTotalCF(const WellConnections& connections);
/// Retrieve currently configured D-factor for single connection
///
/// \param[in] rhoGS Surface condition mass density of gas
///
/// \param[in] gas_visc Reservoir condition gas viscosity
///
/// \param[in] conn Reservoir connection for which to retrieve the
/// D-factor.
///
/// \return D-factor for connection \p conn.
double getDFactor(const double rhoGS,
const double gas_visc,
const Connection& conn) const;
/// Retrieve current D-factor correlation model coefficients.
const Correlation& getDFactorCorrelationCoefficients() const
{
@ -203,6 +215,27 @@ namespace Opm {
/// Coefficients for Dake's correlation model.
Correlation m_corr{};
/// Retrieve connection-level D-Factor from COMPDAT entries
///
/// Possibly translated from well-level values.
///
/// \param[in] conn Reservoir connection for which to retrieve the
/// D-factor.
///
/// \return Connection-level D-factor.
double connectionLevelDFactor(const Connection& conn) const;
/// Translate well-level D-factor to connection level D-factor
///
/// \param[in] dfac Well-level D-factor.
///
/// \param[in] conn Reservoir connection for which to retrieve the
/// D-factor.
///
/// \return Connection-level D-factor, translated from well level.
double scaledWellLevelDFactor(const double dfac,
const Connection& conn) const;
};
} // namespace Opm

View File

@ -39,6 +39,22 @@
#include <numeric>
#include <string>
namespace {
double dakeModelDFactor(const double rhoGS,
const double gas_visc,
const Opm::Connection::CTFProperties& ctf_props)
{
using namespace Opm::unit;
// Specific gravity of gas relative to air at standard conditions.
constexpr auto rho_air = 1.22*kilogram / cubic(meter);
const auto specific_gravity = rhoGS / rho_air;
return ctf_props.static_dfac_corr_coeff * specific_gravity / gas_visc;
}
}
namespace Opm {
WDFAC::Correlation WDFAC::Correlation::serializationTestObject()
@ -103,57 +119,22 @@ namespace Opm {
[](const double tot_cf, const auto& conn) { return tot_cf + conn.CF(); });
}
double WDFAC::getDFactor(const Connection& connection, double mu, double rho, double phi) const
double WDFAC::getDFactor(const double rhoGS,
const double gas_visc,
const Connection& conn) const
{
switch (this->m_type) {
case WDFacType::NONE:
return 0.0;
case WDFacType::DFACTOR:
{
if (m_total_cf < 0.0) {
throw std::invalid_argument { "Total connection factor is not set" };
}
return this->m_d * this->m_total_cf / connection.CF();
}
return this->scaledWellLevelDFactor(this->m_d, conn);
case WDFacType::DAKEMODEL:
{
const double Kh = connection.Kh();
const double Ke = connection.Ke();
const double h = Kh / Ke;
const double rw = connection.rw();
const auto k_md = unit::convert::to(Ke, prefix::milli*unit::darcy);
double beta = m_corr.coeff_a * (std::pow(k_md, m_corr.exponent_b) * std::pow(phi, m_corr.exponent_c));
double specific_gravity = rho / 1.225; // divide by density of air at standard conditions.
return beta * specific_gravity * Ke / (h * mu * rw );
}
break;
return dakeModelDFactor(rhoGS, gas_visc, conn.ctfProperties());
case WDFacType::CON_DFACTOR:
{
const double d = connection.dFactor();
// If a negative D-factor is set in COMPDAT, then the individual
// connection D-factor should be used directly.
if (d < 0.0) {
return -d;
}
if (this->m_total_cf < 0.0) {
throw std::invalid_argument { "Total connection factor is not set" };
}
// If a positive D-factor is set in COMPDAT, then the connection
// D-factor is treated as a well-level D-factor and thus scaled
// with the connection transmissibility factor.
return d * m_total_cf / connection.CF();
}
default:
break;
return this->connectionLevelDFactor(conn);
}
return 0.0;
@ -172,4 +153,32 @@ namespace Opm {
&& (this->m_corr == other.m_corr)
;
}
double WDFAC::connectionLevelDFactor(const Connection& conn) const
{
const double d = conn.dFactor();
// Negative D-factor values in COMPDAT should be used directly as
// connection-level D-factors.
if (d < 0.0) {
return -d;
}
// Positive D-factor values in COMPDAT are treated as well-level
// values and scaled with the CTF for translation to connection
// level.
return this->scaledWellLevelDFactor(d, conn);
}
double WDFAC::scaledWellLevelDFactor(const double dfac,
const Connection& conn) const
{
if (this->m_total_cf < 0.0) {
throw std::invalid_argument {
"Total well-level connection factor is not set"
};
}
return dfac * this->m_total_cf / conn.CF();
}
}

View File

@ -5866,7 +5866,6 @@ END
const double rho = 1.0;
const double mu = 0.01*prefix::centi*unit::Poise;
const double phi = 0.3;
{
const auto& well11 = sched.getWell("W1", 1);
@ -5879,8 +5878,8 @@ END
R"(Well "W1" must use D-Factors at step 1)");
// Well-level D-factor scaled by connection transmissibility factor.
BOOST_CHECK_CLOSE(wdfac11.getDFactor(well11.getConnections()[0], mu, rho, phi), 6*1.0*dFacUnit, 1e-12);
BOOST_CHECK_CLOSE(wdfac21.getDFactor(well21.getConnections()[0], mu, rho, phi), 2.0*dFacUnit, 1e-12);
BOOST_CHECK_CLOSE(wdfac11.getDFactor(rho, mu, well11.getConnections()[0]), 6*1.0*dFacUnit, 1e-12);
BOOST_CHECK_CLOSE(wdfac21.getDFactor(rho, mu, well21.getConnections()[0]), 2.0*dFacUnit, 1e-12);
}
{
@ -5889,8 +5888,29 @@ END
const auto& wdfac12 = well12.getWDFAC();
const auto& wdfac22 = well22.getWDFAC();
BOOST_CHECK_CLOSE(wdfac12.getDFactor(well12.getConnections()[0], mu, rho, phi), 5.19e-1, 3);
BOOST_CHECK_CLOSE(wdfac22.getDFactor(well22.getConnections()[0], mu, rho, phi), 2.0*dFacUnit, 1e-12);
// Intentional copy.
auto conn0 = well12.getConnections()[0];
{
const auto& corr = wdfac12.getDFactorCorrelationCoefficients();
const auto k = 10.0*prefix::milli*unit::darcy;
const auto k0 = 1.0*prefix::milli*unit::darcy;
const auto h = 20.0*unit::meter;
const auto rw = 0.108*unit::meter;
const auto poro = 0.3;
const auto static_dfac_corr_coeff = corr.coeff_a
* std::pow(k / k0, corr.exponent_b)
* std::pow(poro , corr.exponent_c)
* k / (h * rw);
BOOST_CHECK_CLOSE(static_dfac_corr_coeff, 6.238808556951547e-06, 1.0e-8);
conn0.setStaticDFacCorrCoeff(static_dfac_corr_coeff);
}
BOOST_CHECK_CLOSE(wdfac12.getDFactor(rho, mu, conn0), 5.19e-1, 3);
BOOST_CHECK_CLOSE(wdfac22.getDFactor(rho, mu, conn0), 2.0*dFacUnit, 1e-12);
}
{
@ -5906,8 +5926,8 @@ END
BOOST_CHECK_CLOSE(well13.getConnections()[1].dFactor(), 0.0*dFacUnit, 1e-12);
BOOST_CHECK_CLOSE(well13.getConnections()[2].dFactor(), 11.0*dFacUnit, 1e-12);
BOOST_CHECK_CLOSE(wdfac13.getDFactor(well13.getConnections()[2], mu, rho, phi), 6.0/3.0*11.0*dFacUnit, 1e-12);
BOOST_CHECK_CLOSE(wdfac23.getDFactor(well23.getConnections()[0], mu, rho, phi), 2.0*dFacUnit, 1e-12);
BOOST_CHECK_CLOSE(wdfac13.getDFactor(rho, mu, well13.getConnections()[2]), 6.0/3.0*11.0*dFacUnit, 1e-12);
BOOST_CHECK_CLOSE(wdfac23.getDFactor(rho, mu, well23.getConnections()[0]), 2.0*dFacUnit, 1e-12);
}
}