diff --git a/opm/material/components/CO2.hpp b/opm/material/components/CO2.hpp index b8b1062c5..ba688aecc 100644 --- a/opm/material/components/CO2.hpp +++ b/opm/material/components/CO2.hpp @@ -169,7 +169,10 @@ public: const Evaluation& pressure, bool extrapolate = false) { - return tabulatedEnthalpy.eval(temperature, pressure, extrapolate); + // TEST 2nd degree polynomial fitted with Coolprop data in temperature + // range (273.15, 403.15) with reference state T=288.15 K (=15 C) and p = 101325 Pa + return (temperature - 273.15 - 15)*(8.42323594e+02 + 4.54513769e-01*(temperature - 273.15 - 15)) - 0.005 * (pressure - 1.01325e5); + // return tabulatedEnthalpy.eval(temperature, pressure, extrapolate); } /*! diff --git a/opm/material/fluidsystems/blackoilpvt/BrineCo2Pvt.hpp b/opm/material/fluidsystems/blackoilpvt/BrineCo2Pvt.hpp index eb8c1381d..3ea7733c7 100644 --- a/opm/material/fluidsystems/blackoilpvt/BrineCo2Pvt.hpp +++ b/opm/material/fluidsystems/blackoilpvt/BrineCo2Pvt.hpp @@ -635,10 +635,10 @@ private: /* heat of dissolution for CO2 according to Fig. 6 in Duan and Sun 2003. (kJ/kg) In the relevant temperature ranges CO2 dissolution is exothermal */ - delta_hCO2 = (-57.4375 + T * 0.1325) * 1000/44; + // delta_hCO2 = (-57.4375 + T * 0.1325) * 1000/44; /* enthalpy contribution of CO2 (kJ/kg) */ - hg = CO2::gasEnthalpy(T, p, extrapolate)/1E3 + delta_hCO2; + hg = CO2::gasEnthalpy(T, p, extrapolate)/1E3; //+ delta_hCO2; /* Enthalpy of brine with dissolved CO2 */ return (h_ls1 - X_CO2_w*hw + hg*X_CO2_w)*1E3; /*J/kg*/