adding a LBC viscosity function translated from Julia code

to make sure we get the same viscosity
This commit is contained in:
Kai Bao 2021-12-11 00:14:14 +01:00 committed by Trine Mykkeltvedt
parent e33600e6b7
commit bb86f443c7
2 changed files with 66 additions and 2 deletions

View File

@ -126,7 +126,6 @@ public:
unsigned phaseIdx)
{
const Scalar MPa_atm = 0.101325;
const Scalar R = 8.3144598e-3;//Mj/kmol*K
const auto& T = Opm::decay<LhsEval>(fluidState.temperature(phaseIdx));
const auto& rho = Opm::decay<LhsEval>(fluidState.density(phaseIdx));
@ -205,6 +204,69 @@ public:
return (my0 + (Opm::pow(sumLBC,4.0) - 1e-4)/zeta_tot -1.8366e-8*Opm::pow(rho_r,13.992))/1e3; // mPas-> Pas
}
// translation of the viscosity code from the Julia code
template <class FluidState, class Params, class LhsEval = typename FluidState::Scalar>
static LhsEval LBCJulia(const FluidState& fluidState,
const Params& /*paramCache*/,
unsigned phaseIdx) {
constexpr Scalar mol_factor = 1000.;
constexpr Scalar rankine = 5. / 9.;
constexpr Scalar psia = 6.894757293168360e+03;
constexpr Scalar R = 8.3144598;
const Scalar T = Opm::decay<LhsEval>(fluidState.temperature(phaseIdx));
const Scalar P = Opm::decay<LhsEval>(fluidState.pressure(phaseIdx));
const Scalar Z = Opm::decay<LhsEval>(fluidState.compressFactor(phaseIdx));
const Scalar rho = P / (R * T * Z);
Scalar P_pc = 0.;
Scalar T_pc = 0.;
Scalar Vc = 0.;
Scalar mwc = 0.;
Scalar a = 0.;
Scalar b = 0.;
for (unsigned compIdx = 0; compIdx < FluidSystem::numComponents; ++compIdx) {
const Scalar mol_frac = Opm::decay<LhsEval>(fluidState.moleFraction(phaseIdx, compIdx));
const Scalar mol_weight = FluidSystem::molarMass(compIdx); // TODO: check values
const Scalar p_c = FluidSystem::criticalPressure(compIdx);
const Scalar T_c = FluidSystem::criticalTemperature(compIdx);
const Scalar v_c = FluidSystem::criticalVolume(compIdx);
mwc += mol_frac * mol_weight;
P_pc += mol_frac * p_c;
T_pc += mol_frac * T_c;
Vc += mol_frac * v_c;
const Scalar tr = T / T_c;
const Scalar Tc = T_c / rankine;
const Scalar Pc = p_c / psia;
const Scalar mwi = Opm::sqrt(mol_factor * mol_weight);
const Scalar e_i = 5.4402 * Opm::pow(Tc, 1./6.) / (mwi * Opm::pow(Pc, 2./3.) * 1.e-3);
Scalar mu_i;
if (tr > 1.5) {
mu_i = 17.78e-5 * Opm::pow(4.58*tr - 1.67, 0.625) / e_i;
} else {
mu_i = 34.e-5 * Opm::pow(tr, 0.94) / e_i;
}
a += mol_frac * mu_i * mwi;
b += mol_frac * mwi;
}
const Scalar mu_atm = a / b;
const Scalar e_mix = 5.4402 * Opm::pow(T_pc/rankine, 1./6.) /
(Opm::sqrt(mol_factor * mwc) * Opm::pow(P_pc/psia, 2./3.) * (1e-3));
const Scalar rhor = Vc * rho;
Scalar corr = 0.;
const std::vector<Scalar> LBC{0.10230, 0.023364, 0.058533, -0.040758, 0.0093324};
const Scalar shift = -1.e-4;
for (unsigned i = 0; i < 5; ++i) {
corr += LBC[i] * Opm::pow(rhor, i);
}
LhsEval mu = mu_atm + (corr * corr * corr * corr + shift)/e_mix;
return mu;
}
};
} // namespace Opm

View File

@ -141,7 +141,9 @@ namespace Opm {
unsigned phaseIdx)
{
// Use LBC method to calculate viscosity
LhsEval mu = LBCviscosity::LBCmod(fluidState, paramCache, phaseIdx);
// LhsEval mu = LBCviscosity::LBCmod(fluidState, paramCache, phaseIdx);
// LhsEval mu = LBCviscosity::LBC(fluidState, paramCache, phaseIdx);
LhsEval mu = LBCviscosity::LBCJulia(fluidState, paramCache, phaseIdx);
return mu;
}