use code generation for producing the specializations if the dense AD Evaluation class

This commit is contained in:
Andreas Lauser 2017-03-15 17:31:08 +01:00
parent db46b907a2
commit c170647969
14 changed files with 2305 additions and 2005 deletions

View File

@ -39,11 +39,130 @@
#include <array>
#include <cmath>
#include <cassert>
#include <cstring>
#include <iostream>
#include <algorithm>
namespace Opm {
namespace DenseAd {
template <class ValueT, int numVars>
class Evaluation;
/*!
* \brief Provides operations on Evaluations, so that these can be specialized without
* having to copy-and-paste the whole Evaluation class.
*
* \internal
*/
template <class ValueT, int numVars>
struct EvaluationOps
{
private:
typedef Evaluation<ValueT, numVars> Eval;
static constexpr int length_ = Eval::length_;
static constexpr int valuepos_ = Eval::valuepos_;
static constexpr int dstart_ = Eval::dstart_;
static constexpr int dend_ = Eval::dend_ ;
public:
static inline void clearDerivatives(Eval& a)
{
for (int i = dstart_; i < dend_; ++i)
a.data_[i] = 0.0;
}
static inline void assign(Eval& a, const Eval& b)
{
a.data_ = b.data_;
}
static inline void assignNegative(Eval& a, const Eval& b)
{
for (int idx = 0; idx < length_; ++idx)
a.data_[idx] = - b.data_[idx];
}
static inline Eval& addEq(Eval& a, const Eval& b)
{
for (int i = 0; i < length_; ++i)
a.data_[i] += b.data_[i];
return a;
}
static inline Eval& subEq(Eval& a, const Eval& b)
{
for (int i = 0; i < length_; ++i)
a.data_[i] -= b.data_[i];
return a;
}
static inline Eval& mulEq(Eval& a, const Eval& b)
{
// while the values are multiplied, the derivatives follow the product rule,
// i.e., (u*v)' = (v'u + u'v).
const ValueT u = a.value();
const ValueT v = b.value();
a.data_[valuepos_] *= v ;
for (int idx = dstart_; idx < dend_; ++idx)
a.data_[idx] = a.data_[idx] * v + b.data_[idx] * u;
return a;
}
template <class RhsValueType>
static inline Eval& scalarMulEq(Eval& a, const RhsValueType& other)
{
// values and derivatives are multiplied
for (int idx = 0 ; idx < length_; ++ idx)
a.data_[idx] *= other;
return a;
}
static inline Eval& divEq(Eval& a, const Eval& b)
{
// values are divided, derivatives follow the rule for division, i.e., (u/v)' = (v'u - u'v)/v^2.
const ValueT v_vv = 1.0 / b.value();
const ValueT u_vv = a.value() * v_vv * v_vv;
a.data_[valuepos_] *= v_vv;
for (int idx = dstart_; idx < dend_; ++idx)
a.data_[idx] = a.data_[idx] * v_vv - b.data_[idx] * u_vv;
return a;
}
template <class RhsValueType>
static inline Eval& scalarDivEq(Eval& a, const RhsValueType& other)
{
// values and derivatives are divided
for (int idx = 0 ; idx <= length_; ++ idx)
a.data_[idx] /= other;
return a;
}
// a/b with 'a' being a scalar and 'b' an Evaluation
template <class RhsValueType>
static inline Eval devide(const RhsValueType& a, const Eval& b )
{
Eval result;
result.setValue( a/b.value() );
const ValueT df_dg = - result.value()/b.value();
for (int idx = dstart_; idx < dend_; ++idx)
result.data_[idx] = df_dg*b.data_[idx];
return result;
}
};
/*!
* \brief Represents a function evaluation and its derivatives w.r.t. a fixed set of
* variables.
@ -51,6 +170,10 @@ namespace DenseAd {
template <class ValueT, int numVars>
class Evaluation
{
typedef EvaluationOps<ValueT, numVars> Ops;
friend Ops;
public:
//! field type
typedef ValueT ValueType;
@ -75,8 +198,9 @@ public:
{}
//! copy other function evaluation
Evaluation(const Evaluation& other) : data_( other.data_ )
Evaluation(const Evaluation& other)
{
Ops::assign(*this, other);
}
// create an evaluation which represents a constant function
@ -110,8 +234,7 @@ public:
// set all derivatives to zero
void clearDerivatives()
{
for (int i = dstart_; i < dend_; ++i)
data_[ i ] = 0.0;
Ops::clearDerivatives(*this);
}
// create a function evaluation for a "naked" depending variable (i.e., f(x) = x)
@ -123,20 +246,6 @@ public:
return Evaluation( value, varPos );
}
// create a function evaluation for a "naked" depending variable (i.e., f(x) = x)
template <class RhsValueType>
static Evaluation devide(const RhsValueType& a, const Evaluation& b )
{
Evaluation<ValueType, numVars> result;
result.setValue( a/b.value() );
const ValueType df_dg = - result.value()/b.value();
for (int idx = dstart_; idx < dend_; ++idx) {
result.data_[idx] = df_dg*b.data_[idx];
}
return result;
}
// "evaluate" a constant function (i.e. a function that does not depend on the set of
// relevant variables, f(x) = c).
template <class RhsValueType>
@ -165,13 +274,7 @@ public:
// add value and derivatives from other to this values and derivatives
Evaluation& operator+=(const Evaluation& other)
{
// value and derivatives are added
for (int varIdx = 0; varIdx < length_; ++ varIdx)
data_[ varIdx ] += other.data_[ varIdx ];
return *this;
}
{ return Ops::addEq(*this, other); }
// add value from other to this values
template <class RhsValueType>
@ -184,13 +287,7 @@ public:
// subtract other's value and derivatives from this values
Evaluation& operator-=(const Evaluation& other)
{
// value and derivatives are subtracted
for (int idx = 0 ; idx < length_ ; ++ idx)
data_[idx] -= other.data_[idx];
return *this;
}
{ return Ops::subEq(*this, other); }
// subtract other's value from this values
template <class RhsValueType>
@ -204,54 +301,21 @@ public:
// multiply values and apply chain rule to derivatives: (u*v)' = (v'u + u'v)
Evaluation& operator*=(const Evaluation& other)
{
// while the values are multiplied, the derivatives follow the product rule,
// i.e., (u*v)' = (v'u + u'v).
const ValueType u = value();
const ValueType v = other.value();
data_[ valuepos_ ] *= v ;
for (int idx = dstart_; idx < dend_; ++idx) {
data_[idx] = data_[idx] * v + other.data_[idx] * u;
}
return *this;
}
{ return Ops::mulEq(*this, other); }
// m(u*v)' = (v'u + u'v)
template <class RhsValueType>
Evaluation& operator*=(const RhsValueType& other)
{
// values and derivatives are multiplied
for (int idx = 0 ; idx < length_ ; ++ idx)
data_[idx] *= other;
return *this;
}
{ return Ops::scalarMulEq(*this, other); }
// m(u*v)' = (v'u + u'v)
Evaluation& operator/=(const Evaluation& other)
{
// values are divided, derivatives follow the rule for division, i.e., (u/v)' = (v'u - u'v)/v^2.
const ValueType v_vv = 1.0 / other.value();
const ValueType u_vv = value() * v_vv * v_vv;
data_[ valuepos_ ] *= v_vv;
for (int idx = dstart_; idx < dend_; ++idx) {
data_[idx] = data_[idx] * v_vv - other.data_[idx] * u_vv;
}
return *this;
}
{ return Ops::divEq(*this, other); }
// multiply value and derivatives by value of other
template <class RhsValueType>
Evaluation& operator/=(const RhsValueType& other)
{
// values and derivatives are divided
const ValueType factor = (1.0/other);
return this->operator *=( factor );
}
{ return Ops::scalarDivEq(*this, other); }
// add two evaluation objects
Evaluation operator+(const Evaluation& other) const
@ -274,8 +338,7 @@ public:
Evaluation operator-(const Evaluation& other) const
{
Evaluation result(*this);
result -= other;
return result;
return (result -= other);
}
// subtract constant from evaluation object
@ -283,8 +346,7 @@ public:
Evaluation operator-(const RhsValueType& other) const
{
Evaluation result(*this);
result -= other;
return result;
return (result -= other);
}
// negation (unary minus) operator
@ -292,8 +354,7 @@ public:
{
Evaluation result;
// set value and derivatives to negative
for (int idx = 0; idx < length_; ++idx)
result.data_[idx] = - data_[idx];
Ops::assignNegative(result, *this);
return result;
}
@ -339,7 +400,7 @@ public:
// copy assignment from evaluation
Evaluation& operator=(const Evaluation& other)
{
data_ = other.data_;
Ops::assign(*this, other);
return *this;
}
@ -392,7 +453,8 @@ public:
{ return data_[valuepos_]; }
// set value of variable
void setValue(const ValueType& val)
template <class RhsValueType>
void setValue(const RhsValueType& val)
{ data_[valuepos_] = val; }
// return varIdx'th derivative
@ -437,9 +499,7 @@ template <class RhsValueType, class ValueType, int numVars>
Evaluation<ValueType, numVars> operator+(const RhsValueType& a, const Evaluation<ValueType, numVars>& b)
{
Evaluation<ValueType, numVars> result(b);
result += a;
return result;
}
@ -454,7 +514,9 @@ Evaluation<ValueType, numVars> operator-(const RhsValueType& a, const Evaluation
template <class RhsValueType, class ValueType, int numVars>
Evaluation<ValueType, numVars> operator/(const RhsValueType& a, const Evaluation<ValueType, numVars>& b)
{
return Evaluation<ValueType, numVars>::devide( a, b );
typedef EvaluationOps<ValueType, numVars> Ops;
return Ops::devide( a, b );
}
template <class RhsValueType, class ValueType, int numVars>
@ -537,10 +599,6 @@ public:
} // namespace Dune
#include <opm/material/densead/Evaluation1.hpp>
#include <opm/material/densead/Evaluation2.hpp>
#include <opm/material/densead/Evaluation3.hpp>
#include <opm/material/densead/Evaluation6.hpp>
#include <opm/material/densead/Evaluation12.hpp>
#include <opm/material/densead/EvaluationSpecializations.hpp>
#endif

View File

@ -23,394 +23,126 @@
/*!
* \file
*
* \brief Representation of an evaluation of a function and its derivatives w.r.t. a set
* of variables in the localized OPM automatic differentiation (AD) framework.
* \brief This file specializes the dense-AD Evaluation class for 1 derivatives.
*
* \attention THIS FILE GETS AUTOMATICALLY GENERATED BY THE "genEvalSpecializations.py"
* SCRIPT. DO NOT EDIT IT MANUALLY!
*/
#ifndef OPM_LOCAL_AD_EVALUATION_1_HPP
#define OPM_LOCAL_AD_EVALUATION_1_HPP
#include "Math.hpp"
#include <opm/common/Valgrind.hpp>
#include <dune/common/version.hh>
#include <array>
#include <cmath>
#include <cassert>
#include <iostream>
#include <algorithm>
#ifndef OPM_DENSEAD_EVALUATION1_HPP
#define OPM_DENSEAD_EVALUATION1_HPP
namespace Opm {
namespace DenseAd {
/*!
* \brief Represents a function evaluation and its derivatives w.r.t. a fixed set of
* variables.
*/
template <class ValueT>
class Evaluation< ValueT, 1 >
struct EvaluationOps<ValueT, 1>
{
static constexpr int numVars = 1;
private:
typedef Evaluation<ValueT, 1 > Eval;
public:
//! field type
typedef ValueT ValueType;
//! number of derivatives
static constexpr int size = numVars;
protected:
//! length of internal data vector
static constexpr int length_ = numVars + 1 ;
//! position index for value
static constexpr int valuepos_ = 0;
//! start index for derivatives
static constexpr int dstart_ = 1;
//! end+1 index for derivatives
static constexpr int dend_ = length_ ;
public:
//! default constructor
Evaluation() : data_()
{}
//! copy other function evaluation
Evaluation(const Evaluation& other) : data_( other.data_ )
static inline void assign(Eval& a, const Eval& b)
{
a.data_[0] = b.data_[0];
a.data_[1] = b.data_[1];
}
// create an evaluation which represents a constant function
//
// i.e., f(x) = c. this implies an evaluation with the given value and all
// derivatives being zero.
template <class RhsValueType>
Evaluation(const RhsValueType& c)
static inline void assignNegative(Eval& a, const Eval& b)
{
setValue( c );
clearDerivatives();
Valgrind::CheckDefined( data_ );
a.data_[0] = - b.data_[0];
a.data_[1] = - b.data_[1];
}
// create an evaluation which represents a constant function
//
// i.e., f(x) = c. this implies an evaluation with the given value and all
// derivatives being zero.
template <class RhsValueType>
Evaluation(const RhsValueType& c, int varPos)
static inline void clearDerivatives(Eval& a)
{
setValue( c );
clearDerivatives();
// The variable position must be in represented by the given variable descriptor
assert(0 <= varPos && varPos < numVars);
data_[varPos + dstart_] = 1.0;
Valgrind::CheckDefined(data_);
a.data_[1] = 0.0;
}
// set all derivatives to zero
void clearDerivatives()
static inline Eval& addEq(Eval& a, const Eval& b)
{
data_[ 1 ] = 0;
a.data_[0] += b.data_[0];
a.data_[1] += b.data_[1];
return a;
}
// create a function evaluation for a "naked" depending variable (i.e., f(x) = x)
template <class RhsValueType>
static Evaluation devide(const RhsValueType& a, const Evaluation& b )
static inline Eval& subEq(Eval& a, const Eval& b)
{
Evaluation<ValueType, numVars> result;
result.setValue( a/b.value() );
const ValueType df_dg = - result.value()/b.value();
for (int idx = dstart_; idx < dend_; ++idx) {
result.data_[idx] = df_dg*b.data_[idx];
}
return result;
a.data_[0] -= b.data_[0];
a.data_[1] -= b.data_[1];
return a;
}
// create a function evaluation for a "naked" depending variable (i.e., f(x) = x)
template <class RhsValueType>
static Evaluation createVariable(const RhsValueType& value, int varPos)
{
// copy function value and set all derivatives to 0, except for the variable
// which is represented by the value (which is set to 1.0)
return Evaluation( value, varPos );
}
// "evaluate" a constant function (i.e. a function that does not depend on the set of
// relevant variables, f(x) = c).
template <class RhsValueType>
static Evaluation createConstant(const RhsValueType& value)
{
return Evaluation( value );
}
// print the value and the derivatives of the function evaluation
void print(std::ostream& os = std::cout) const
{
// print value
os << "v: " << value() << " / d:";
// print derivatives
for (int varIdx = 0; varIdx < numVars; ++varIdx)
os << " " << derivative(varIdx);
}
// copy all derivatives from other
void copyDerivatives(const Evaluation& other)
{
data_[ 1 ] = other.data_[ 1 ];
}
// add value and derivatives from other to this values and derivatives
Evaluation& operator+=(const Evaluation& other)
{
data_[ 0 ] += other.data_[ 0 ];
data_[ 1 ] += other.data_[ 1 ];
return *this;
}
// add value from other to this values
template <class RhsValueType>
Evaluation& operator+=(const RhsValueType& other)
{
// value is added, derivatives stay the same
data_[valuepos_] += other;
return *this;
}
// subtract other's value and derivatives from this values
Evaluation& operator-=(const Evaluation& other)
{
// value and derivatives are subtracted
data_[ 0 ] -= other.data_[ 0 ];
data_[ 1 ] -= other.data_[ 1 ];
return *this;
}
// subtract other's value from this values
template <class RhsValueType>
Evaluation& operator-=(const RhsValueType& other)
{
// for constants, values are subtracted, derivatives stay the same
data_[ valuepos_ ] -= other;
return *this;
}
// multiply values and apply chain rule to derivatives: (u*v)' = (v'u + u'v)
Evaluation& operator*=(const Evaluation& other)
static inline Eval& mulEq(Eval& a, const Eval& b)
{
// while the values are multiplied, the derivatives follow the product rule,
// i.e., (u*v)' = (v'u + u'v).
const ValueType u = value();
const ValueType v = other.value();
const ValueT u = a.value();
const ValueT v = b.value();
data_[ 0 ] = u * v ;
data_[ 1 ] = data_[ 1 ] * v + other.data_[ 1 ] * u;
// value
a.data_[0] *= v ;
return *this;
// derivatives
a.data_[1] = a.data_[1]*v + b.data_[1] * u;
return a;
}
template <class RhsType>
static inline Eval& scalarMulEq(Eval& a, const RhsType& other)
{
a.data_[0] *= other;
a.data_[1] *= other;
return a;
}
static inline Eval& divEq(Eval& a, const Eval& b)
{
// values are divided, derivatives follow the rule for division, i.e., (u/v)' = (v'u - u'v)/v^2.
const ValueT v_vv = 1.0 / b.value();
const ValueT u_vv = a.value() * v_vv * v_vv;
// value
a.data_[0] *= v_vv;
// derivatives
a.data_[1] = a.data_[1]*v_vv - b.data_[1]*u_vv;
return a;
}
template <class RhsType>
static inline Eval& scalarDivEq(Eval& a, const RhsType& other)
{
a.data_[0] /= other;
a.data_[1] /= other;
return a;
}
// m(u*v)' = (v'u + u'v)
template <class RhsValueType>
Evaluation& operator*=(RhsValueType other)
static inline Eval devide(const RhsValueType& a, const Eval& b)
{
data_[ 0 ] *= other;
data_[ 1 ] *= other;
return *this;
}
Eval result;
result.setValue( a/b.value() );
const ValueT df_dg = - result.value()/b.value();
// m(u*v)' = (v'u + u'v)
Evaluation& operator/=(const Evaluation& other)
{
// values are divided, derivatives follow the rule for division, i.e., (u/v)' = (v'u -
// u'v)/v^2.
const ValueType v_vv = 1.0 / other.value();
const ValueType u_vv = value() * v_vv * v_vv;
data_[ 0 ] *= v_vv;
data_[ 1 ] = data_[ 1 ] * v_vv - other.data_[ 1 ] * u_vv ;
return *this;
}
// multiply value and derivatives by value of other
template <class RhsValueType>
Evaluation& operator/=(const RhsValueType& other)
{
// values and derivatives are divided
ValueType factor = (1.0/other);
data_[ 0 ] *= factor;
data_[ 1 ] *= factor;
return *this;
}
// add two evaluation objects
Evaluation operator+(const Evaluation& other) const
{
Evaluation result(*this);
result += other;
return result;
}
// add constant to this object
template <class RhsValueType>
Evaluation operator+(const RhsValueType& other) const
{
Evaluation result(*this);
result += other;
return result;
}
// subtract two evaluation objects
Evaluation operator-(const Evaluation& other) const
{
Evaluation result(*this);
result -= other;
return result;
}
// subtract constant from evaluation object
template <class RhsValueType>
Evaluation operator-(const RhsValueType& other) const
{
Evaluation result(*this);
result -= other;
return result;
}
// negation (unary minus) operator
Evaluation operator-() const
{
Evaluation result;
// set value and derivatives to negative
for (int idx = 0; idx < length_; ++idx)
result.data_[idx] = - data_[idx];
result.data_[1] = df_dg*b.data_[1];
return result;
}
Evaluation operator*(const Evaluation& other) const
{
Evaluation result(*this);
result *= other;
return result;
}
template <class RhsValueType>
Evaluation operator*(const RhsValueType& other) const
{
Evaluation result(*this);
result *= other;
return result;
}
Evaluation operator/(const Evaluation& other) const
{
Evaluation result(*this);
result /= other;
return result;
}
template <class RhsValueType>
Evaluation operator/(const RhsValueType& other) const
{
Evaluation result(*this);
result /= other;
return result;
}
template <class RhsValueType>
Evaluation& operator=(const RhsValueType& other)
{
setValue( other );
clearDerivatives();
return *this;
}
// copy assignment from evaluation
Evaluation& operator=(const Evaluation& other)
{
data_ = other.data_;
return *this;
}
template <class RhsValueType>
bool operator==(const RhsValueType& other) const
{ return value() == other; }
bool operator==(const Evaluation& other) const
{
for (int idx = 0; idx < length_; ++idx)
if (data_[idx] != other.data_[idx])
return false;
return true;
}
bool operator!=(const Evaluation& other) const
{ return !operator==(other); }
template <class RhsValueType>
bool operator>(RhsValueType other) const
{ return value() > other; }
bool operator>(const Evaluation& other) const
{ return value() > other.value(); }
template <class RhsValueType>
bool operator<(RhsValueType other) const
{ return value() < other; }
bool operator<(const Evaluation& other) const
{ return value() < other.value(); }
template <class RhsValueType>
bool operator>=(RhsValueType other) const
{ return value() >= other; }
bool operator>=(const Evaluation& other) const
{ return value() >= other.value(); }
template <class RhsValueType>
bool operator<=(RhsValueType other) const
{ return value() <= other; }
bool operator<=(const Evaluation& other) const
{ return value() <= other.value(); }
// return value of variable
const ValueType& value() const
{ return data_[valuepos_]; }
// set value of variable
void setValue(const ValueType& val)
{ data_[valuepos_] = val; }
// return varIdx'th derivative
const ValueType& derivative(int varIdx) const
{
assert(varIdx < numVars);
return data_[varIdx + dstart_];
}
// set derivative at position varIdx
void setDerivative(int varIdx, const ValueType& derVal)
{
assert(varIdx < numVars);
data_[varIdx + dstart_] = derVal;
}
protected:
std::array<ValueType, length_> data_;
};
} // namespace DenseAD
} // namespace Dune
} } // namespace DenseAd, Opm
#endif
#endif // OPM_DENSEAD_EVALUATION1_HPP

View File

@ -0,0 +1,238 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \brief This file specializes the dense-AD Evaluation class for 10 derivatives.
*
* \attention THIS FILE GETS AUTOMATICALLY GENERATED BY THE "genEvalSpecializations.py"
* SCRIPT. DO NOT EDIT IT MANUALLY!
*/
#ifndef OPM_DENSEAD_EVALUATION10_HPP
#define OPM_DENSEAD_EVALUATION10_HPP
namespace Opm {
namespace DenseAd {
template <class ValueT>
struct EvaluationOps<ValueT, 10>
{
private:
typedef Evaluation<ValueT, 10 > Eval;
public:
static inline void assign(Eval& a, const Eval& b)
{
a.data_[0] = b.data_[0];
a.data_[1] = b.data_[1];
a.data_[2] = b.data_[2];
a.data_[3] = b.data_[3];
a.data_[4] = b.data_[4];
a.data_[5] = b.data_[5];
a.data_[6] = b.data_[6];
a.data_[7] = b.data_[7];
a.data_[8] = b.data_[8];
a.data_[9] = b.data_[9];
a.data_[10] = b.data_[10];
}
static inline void assignNegative(Eval& a, const Eval& b)
{
a.data_[0] = - b.data_[0];
a.data_[1] = - b.data_[1];
a.data_[2] = - b.data_[2];
a.data_[3] = - b.data_[3];
a.data_[4] = - b.data_[4];
a.data_[5] = - b.data_[5];
a.data_[6] = - b.data_[6];
a.data_[7] = - b.data_[7];
a.data_[8] = - b.data_[8];
a.data_[9] = - b.data_[9];
a.data_[10] = - b.data_[10];
}
static inline void clearDerivatives(Eval& a)
{
a.data_[1] = 0.0;
a.data_[2] = 0.0;
a.data_[3] = 0.0;
a.data_[4] = 0.0;
a.data_[5] = 0.0;
a.data_[6] = 0.0;
a.data_[7] = 0.0;
a.data_[8] = 0.0;
a.data_[9] = 0.0;
a.data_[10] = 0.0;
}
static inline Eval& addEq(Eval& a, const Eval& b)
{
a.data_[0] += b.data_[0];
a.data_[1] += b.data_[1];
a.data_[2] += b.data_[2];
a.data_[3] += b.data_[3];
a.data_[4] += b.data_[4];
a.data_[5] += b.data_[5];
a.data_[6] += b.data_[6];
a.data_[7] += b.data_[7];
a.data_[8] += b.data_[8];
a.data_[9] += b.data_[9];
a.data_[10] += b.data_[10];
return a;
}
static inline Eval& subEq(Eval& a, const Eval& b)
{
a.data_[0] -= b.data_[0];
a.data_[1] -= b.data_[1];
a.data_[2] -= b.data_[2];
a.data_[3] -= b.data_[3];
a.data_[4] -= b.data_[4];
a.data_[5] -= b.data_[5];
a.data_[6] -= b.data_[6];
a.data_[7] -= b.data_[7];
a.data_[8] -= b.data_[8];
a.data_[9] -= b.data_[9];
a.data_[10] -= b.data_[10];
return a;
}
static inline Eval& mulEq(Eval& a, const Eval& b)
{
// while the values are multiplied, the derivatives follow the product rule,
// i.e., (u*v)' = (v'u + u'v).
const ValueT u = a.value();
const ValueT v = b.value();
// value
a.data_[0] *= v ;
// derivatives
a.data_[1] = a.data_[1]*v + b.data_[1] * u;
a.data_[2] = a.data_[2]*v + b.data_[2] * u;
a.data_[3] = a.data_[3]*v + b.data_[3] * u;
a.data_[4] = a.data_[4]*v + b.data_[4] * u;
a.data_[5] = a.data_[5]*v + b.data_[5] * u;
a.data_[6] = a.data_[6]*v + b.data_[6] * u;
a.data_[7] = a.data_[7]*v + b.data_[7] * u;
a.data_[8] = a.data_[8]*v + b.data_[8] * u;
a.data_[9] = a.data_[9]*v + b.data_[9] * u;
a.data_[10] = a.data_[10]*v + b.data_[10] * u;
return a;
}
template <class RhsType>
static inline Eval& scalarMulEq(Eval& a, const RhsType& other)
{
a.data_[0] *= other;
a.data_[1] *= other;
a.data_[2] *= other;
a.data_[3] *= other;
a.data_[4] *= other;
a.data_[5] *= other;
a.data_[6] *= other;
a.data_[7] *= other;
a.data_[8] *= other;
a.data_[9] *= other;
a.data_[10] *= other;
return a;
}
static inline Eval& divEq(Eval& a, const Eval& b)
{
// values are divided, derivatives follow the rule for division, i.e., (u/v)' = (v'u - u'v)/v^2.
const ValueT v_vv = 1.0 / b.value();
const ValueT u_vv = a.value() * v_vv * v_vv;
// value
a.data_[0] *= v_vv;
// derivatives
a.data_[1] = a.data_[1]*v_vv - b.data_[1]*u_vv;
a.data_[2] = a.data_[2]*v_vv - b.data_[2]*u_vv;
a.data_[3] = a.data_[3]*v_vv - b.data_[3]*u_vv;
a.data_[4] = a.data_[4]*v_vv - b.data_[4]*u_vv;
a.data_[5] = a.data_[5]*v_vv - b.data_[5]*u_vv;
a.data_[6] = a.data_[6]*v_vv - b.data_[6]*u_vv;
a.data_[7] = a.data_[7]*v_vv - b.data_[7]*u_vv;
a.data_[8] = a.data_[8]*v_vv - b.data_[8]*u_vv;
a.data_[9] = a.data_[9]*v_vv - b.data_[9]*u_vv;
a.data_[10] = a.data_[10]*v_vv - b.data_[10]*u_vv;
return a;
}
template <class RhsType>
static inline Eval& scalarDivEq(Eval& a, const RhsType& other)
{
a.data_[0] /= other;
a.data_[1] /= other;
a.data_[2] /= other;
a.data_[3] /= other;
a.data_[4] /= other;
a.data_[5] /= other;
a.data_[6] /= other;
a.data_[7] /= other;
a.data_[8] /= other;
a.data_[9] /= other;
a.data_[10] /= other;
return a;
}
template <class RhsValueType>
static inline Eval devide(const RhsValueType& a, const Eval& b)
{
Eval result;
result.setValue( a/b.value() );
const ValueT df_dg = - result.value()/b.value();
result.data_[1] = df_dg*b.data_[1];
result.data_[2] = df_dg*b.data_[2];
result.data_[3] = df_dg*b.data_[3];
result.data_[4] = df_dg*b.data_[4];
result.data_[5] = df_dg*b.data_[5];
result.data_[6] = df_dg*b.data_[6];
result.data_[7] = df_dg*b.data_[7];
result.data_[8] = df_dg*b.data_[8];
result.data_[9] = df_dg*b.data_[9];
result.data_[10] = df_dg*b.data_[10];
return result;
}
};
} } // namespace DenseAd, Opm
#endif // OPM_DENSEAD_EVALUATION10_HPP

View File

@ -0,0 +1,248 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \brief This file specializes the dense-AD Evaluation class for 11 derivatives.
*
* \attention THIS FILE GETS AUTOMATICALLY GENERATED BY THE "genEvalSpecializations.py"
* SCRIPT. DO NOT EDIT IT MANUALLY!
*/
#ifndef OPM_DENSEAD_EVALUATION11_HPP
#define OPM_DENSEAD_EVALUATION11_HPP
namespace Opm {
namespace DenseAd {
template <class ValueT>
struct EvaluationOps<ValueT, 11>
{
private:
typedef Evaluation<ValueT, 11 > Eval;
public:
static inline void assign(Eval& a, const Eval& b)
{
a.data_[0] = b.data_[0];
a.data_[1] = b.data_[1];
a.data_[2] = b.data_[2];
a.data_[3] = b.data_[3];
a.data_[4] = b.data_[4];
a.data_[5] = b.data_[5];
a.data_[6] = b.data_[6];
a.data_[7] = b.data_[7];
a.data_[8] = b.data_[8];
a.data_[9] = b.data_[9];
a.data_[10] = b.data_[10];
a.data_[11] = b.data_[11];
}
static inline void assignNegative(Eval& a, const Eval& b)
{
a.data_[0] = - b.data_[0];
a.data_[1] = - b.data_[1];
a.data_[2] = - b.data_[2];
a.data_[3] = - b.data_[3];
a.data_[4] = - b.data_[4];
a.data_[5] = - b.data_[5];
a.data_[6] = - b.data_[6];
a.data_[7] = - b.data_[7];
a.data_[8] = - b.data_[8];
a.data_[9] = - b.data_[9];
a.data_[10] = - b.data_[10];
a.data_[11] = - b.data_[11];
}
static inline void clearDerivatives(Eval& a)
{
a.data_[1] = 0.0;
a.data_[2] = 0.0;
a.data_[3] = 0.0;
a.data_[4] = 0.0;
a.data_[5] = 0.0;
a.data_[6] = 0.0;
a.data_[7] = 0.0;
a.data_[8] = 0.0;
a.data_[9] = 0.0;
a.data_[10] = 0.0;
a.data_[11] = 0.0;
}
static inline Eval& addEq(Eval& a, const Eval& b)
{
a.data_[0] += b.data_[0];
a.data_[1] += b.data_[1];
a.data_[2] += b.data_[2];
a.data_[3] += b.data_[3];
a.data_[4] += b.data_[4];
a.data_[5] += b.data_[5];
a.data_[6] += b.data_[6];
a.data_[7] += b.data_[7];
a.data_[8] += b.data_[8];
a.data_[9] += b.data_[9];
a.data_[10] += b.data_[10];
a.data_[11] += b.data_[11];
return a;
}
static inline Eval& subEq(Eval& a, const Eval& b)
{
a.data_[0] -= b.data_[0];
a.data_[1] -= b.data_[1];
a.data_[2] -= b.data_[2];
a.data_[3] -= b.data_[3];
a.data_[4] -= b.data_[4];
a.data_[5] -= b.data_[5];
a.data_[6] -= b.data_[6];
a.data_[7] -= b.data_[7];
a.data_[8] -= b.data_[8];
a.data_[9] -= b.data_[9];
a.data_[10] -= b.data_[10];
a.data_[11] -= b.data_[11];
return a;
}
static inline Eval& mulEq(Eval& a, const Eval& b)
{
// while the values are multiplied, the derivatives follow the product rule,
// i.e., (u*v)' = (v'u + u'v).
const ValueT u = a.value();
const ValueT v = b.value();
// value
a.data_[0] *= v ;
// derivatives
a.data_[1] = a.data_[1]*v + b.data_[1] * u;
a.data_[2] = a.data_[2]*v + b.data_[2] * u;
a.data_[3] = a.data_[3]*v + b.data_[3] * u;
a.data_[4] = a.data_[4]*v + b.data_[4] * u;
a.data_[5] = a.data_[5]*v + b.data_[5] * u;
a.data_[6] = a.data_[6]*v + b.data_[6] * u;
a.data_[7] = a.data_[7]*v + b.data_[7] * u;
a.data_[8] = a.data_[8]*v + b.data_[8] * u;
a.data_[9] = a.data_[9]*v + b.data_[9] * u;
a.data_[10] = a.data_[10]*v + b.data_[10] * u;
a.data_[11] = a.data_[11]*v + b.data_[11] * u;
return a;
}
template <class RhsType>
static inline Eval& scalarMulEq(Eval& a, const RhsType& other)
{
a.data_[0] *= other;
a.data_[1] *= other;
a.data_[2] *= other;
a.data_[3] *= other;
a.data_[4] *= other;
a.data_[5] *= other;
a.data_[6] *= other;
a.data_[7] *= other;
a.data_[8] *= other;
a.data_[9] *= other;
a.data_[10] *= other;
a.data_[11] *= other;
return a;
}
static inline Eval& divEq(Eval& a, const Eval& b)
{
// values are divided, derivatives follow the rule for division, i.e., (u/v)' = (v'u - u'v)/v^2.
const ValueT v_vv = 1.0 / b.value();
const ValueT u_vv = a.value() * v_vv * v_vv;
// value
a.data_[0] *= v_vv;
// derivatives
a.data_[1] = a.data_[1]*v_vv - b.data_[1]*u_vv;
a.data_[2] = a.data_[2]*v_vv - b.data_[2]*u_vv;
a.data_[3] = a.data_[3]*v_vv - b.data_[3]*u_vv;
a.data_[4] = a.data_[4]*v_vv - b.data_[4]*u_vv;
a.data_[5] = a.data_[5]*v_vv - b.data_[5]*u_vv;
a.data_[6] = a.data_[6]*v_vv - b.data_[6]*u_vv;
a.data_[7] = a.data_[7]*v_vv - b.data_[7]*u_vv;
a.data_[8] = a.data_[8]*v_vv - b.data_[8]*u_vv;
a.data_[9] = a.data_[9]*v_vv - b.data_[9]*u_vv;
a.data_[10] = a.data_[10]*v_vv - b.data_[10]*u_vv;
a.data_[11] = a.data_[11]*v_vv - b.data_[11]*u_vv;
return a;
}
template <class RhsType>
static inline Eval& scalarDivEq(Eval& a, const RhsType& other)
{
a.data_[0] /= other;
a.data_[1] /= other;
a.data_[2] /= other;
a.data_[3] /= other;
a.data_[4] /= other;
a.data_[5] /= other;
a.data_[6] /= other;
a.data_[7] /= other;
a.data_[8] /= other;
a.data_[9] /= other;
a.data_[10] /= other;
a.data_[11] /= other;
return a;
}
template <class RhsValueType>
static inline Eval devide(const RhsValueType& a, const Eval& b)
{
Eval result;
result.setValue( a/b.value() );
const ValueT df_dg = - result.value()/b.value();
result.data_[1] = df_dg*b.data_[1];
result.data_[2] = df_dg*b.data_[2];
result.data_[3] = df_dg*b.data_[3];
result.data_[4] = df_dg*b.data_[4];
result.data_[5] = df_dg*b.data_[5];
result.data_[6] = df_dg*b.data_[6];
result.data_[7] = df_dg*b.data_[7];
result.data_[8] = df_dg*b.data_[8];
result.data_[9] = df_dg*b.data_[9];
result.data_[10] = df_dg*b.data_[10];
result.data_[11] = df_dg*b.data_[11];
return result;
}
};
} } // namespace DenseAd, Opm
#endif // OPM_DENSEAD_EVALUATION11_HPP

View File

@ -23,485 +23,236 @@
/*!
* \file
*
* \brief Representation of an evaluation of a function and its derivatives w.r.t. a set
* of variables in the localized OPM automatic differentiation (AD) framework.
* \brief This file specializes the dense-AD Evaluation class for 12 derivatives.
*
* \attention THIS FILE GETS AUTOMATICALLY GENERATED BY THE "genEvalSpecializations.py"
* SCRIPT. DO NOT EDIT IT MANUALLY!
*/
#ifndef OPM_LOCAL_AD_EVALUATION_12_HPP
#define OPM_LOCAL_AD_EVALUATION_12_HPP
#include "Math.hpp"
#include <opm/common/Valgrind.hpp>
#include <dune/common/version.hh>
#include <array>
#include <cmath>
#include <cassert>
#include <iostream>
#include <algorithm>
#ifndef OPM_DENSEAD_EVALUATION12_HPP
#define OPM_DENSEAD_EVALUATION12_HPP
namespace Opm {
namespace DenseAd {
/*!
* \brief Represents a function evaluation and its derivatives w.r.t. a fixed set of
* variables.
*/
template <class ValueT>
class Evaluation< ValueT, 12 >
struct EvaluationOps<ValueT, 12>
{
static constexpr int numVars = 12;
private:
typedef Evaluation<ValueT, 12 > Eval;
public:
//! field type
typedef ValueT ValueType;
//! number of derivatives
static constexpr int size = numVars;
protected:
//! length of internal data vector
static constexpr int length_ = numVars + 1 ;
//! position index for value
static constexpr int valuepos_ = 0;
//! start index for derivatives
static constexpr int dstart_ = 1;
//! end+1 index for derivatives
static constexpr int dend_ = length_ ;
public:
//! default constructor
Evaluation() : data_()
{}
//! copy other function evaluation
Evaluation(const Evaluation& other) : data_( other.data_ )
static inline void assign(Eval& a, const Eval& b)
{
a.data_[0] = b.data_[0];
a.data_[1] = b.data_[1];
a.data_[2] = b.data_[2];
a.data_[3] = b.data_[3];
a.data_[4] = b.data_[4];
a.data_[5] = b.data_[5];
a.data_[6] = b.data_[6];
a.data_[7] = b.data_[7];
a.data_[8] = b.data_[8];
a.data_[9] = b.data_[9];
a.data_[10] = b.data_[10];
a.data_[11] = b.data_[11];
a.data_[12] = b.data_[12];
}
// create an evaluation which represents a constant function
//
// i.e., f(x) = c. this implies an evaluation with the given value and all
// derivatives being zero.
template <class RhsValueType>
Evaluation(const RhsValueType& c)
static inline void assignNegative(Eval& a, const Eval& b)
{
setValue( c );
clearDerivatives();
Valgrind::CheckDefined( data_ );
a.data_[0] = - b.data_[0];
a.data_[1] = - b.data_[1];
a.data_[2] = - b.data_[2];
a.data_[3] = - b.data_[3];
a.data_[4] = - b.data_[4];
a.data_[5] = - b.data_[5];
a.data_[6] = - b.data_[6];
a.data_[7] = - b.data_[7];
a.data_[8] = - b.data_[8];
a.data_[9] = - b.data_[9];
a.data_[10] = - b.data_[10];
a.data_[11] = - b.data_[11];
a.data_[12] = - b.data_[12];
}
// create a function evaluation for a "naked" depending variable (i.e., f(x) = x)
template <class RhsValueType>
static Evaluation devide(const RhsValueType& a, const Evaluation& b )
static inline void clearDerivatives(Eval& a)
{
Evaluation<ValueType, numVars> result;
result.setValue( a/b.value() );
const ValueType df_dg = - result.value()/b.value();
for (int idx = dstart_; idx < dend_; ++idx) {
result.data_[idx] = df_dg*b.data_[idx];
}
return result;
a.data_[1] = 0.0;
a.data_[2] = 0.0;
a.data_[3] = 0.0;
a.data_[4] = 0.0;
a.data_[5] = 0.0;
a.data_[6] = 0.0;
a.data_[7] = 0.0;
a.data_[8] = 0.0;
a.data_[9] = 0.0;
a.data_[10] = 0.0;
a.data_[11] = 0.0;
a.data_[12] = 0.0;
}
// create an evaluation which represents a constant function
//
// i.e., f(x) = c. this implies an evaluation with the given value and all
// derivatives being zero.
template <class RhsValueType>
Evaluation(const RhsValueType& c, int varPos)
static inline Eval& addEq(Eval& a, const Eval& b)
{
setValue( c );
clearDerivatives();
// The variable position must be in represented by the given variable descriptor
assert(0 <= varPos && varPos < numVars);
data_[varPos + dstart_] = 1.0;
Valgrind::CheckDefined(data_);
a.data_[0] += b.data_[0];
a.data_[1] += b.data_[1];
a.data_[2] += b.data_[2];
a.data_[3] += b.data_[3];
a.data_[4] += b.data_[4];
a.data_[5] += b.data_[5];
a.data_[6] += b.data_[6];
a.data_[7] += b.data_[7];
a.data_[8] += b.data_[8];
a.data_[9] += b.data_[9];
a.data_[10] += b.data_[10];
a.data_[11] += b.data_[11];
a.data_[12] += b.data_[12];
return a;
}
// set all derivatives to zero
void clearDerivatives()
static inline Eval& subEq(Eval& a, const Eval& b)
{
data_[ 1 ] = 0;
data_[ 2 ] = 0;
data_[ 3 ] = 0;
data_[ 4 ] = 0;
data_[ 5 ] = 0;
data_[ 6 ] = 0;
data_[ 7 ] = 0;
data_[ 8 ] = 0;
data_[ 9 ] = 0;
data_[ 10 ] = 0;
data_[ 11 ] = 0;
data_[ 12 ] = 0;
a.data_[0] -= b.data_[0];
a.data_[1] -= b.data_[1];
a.data_[2] -= b.data_[2];
a.data_[3] -= b.data_[3];
a.data_[4] -= b.data_[4];
a.data_[5] -= b.data_[5];
a.data_[6] -= b.data_[6];
a.data_[7] -= b.data_[7];
a.data_[8] -= b.data_[8];
a.data_[9] -= b.data_[9];
a.data_[10] -= b.data_[10];
a.data_[11] -= b.data_[11];
a.data_[12] -= b.data_[12];
return a;
}
// create a function evaluation for a "naked" depending variable (i.e., f(x) = x)
template <class RhsValueType>
static Evaluation createVariable(const RhsValueType& value, int varPos)
{
// copy function value and set all derivatives to 0, except for the variable
// which is represented by the value (which is set to 1.0)
return Evaluation( value, varPos );
}
// "evaluate" a constant function (i.e. a function that does not depend on the set of
// relevant variables, f(x) = c).
template <class RhsValueType>
static Evaluation createConstant(const RhsValueType& value)
{
return Evaluation( value );
}
// print the value and the derivatives of the function evaluation
void print(std::ostream& os = std::cout) const
{
// print value
os << "v: " << value() << " / d:";
// print derivatives
for (int varIdx = 0; varIdx < numVars; ++varIdx)
os << " " << derivative(varIdx);
}
// copy all derivatives from other
void copyDerivatives(const Evaluation& other)
{
data_[ 1 ] = other.data_[ 1 ];
data_[ 2 ] = other.data_[ 2 ];
data_[ 3 ] = other.data_[ 3 ];
data_[ 4 ] = other.data_[ 4 ];
data_[ 5 ] = other.data_[ 5 ];
data_[ 6 ] = other.data_[ 6 ];
data_[ 7 ] = other.data_[ 7 ];
data_[ 8 ] = other.data_[ 8 ];
data_[ 9 ] = other.data_[ 9 ];
data_[ 10 ] = other.data_[ 10 ];
data_[ 11 ] = other.data_[ 11 ];
data_[ 12 ] = other.data_[ 12 ];
}
// add value and derivatives from other to this values and derivatives
Evaluation& operator+=(const Evaluation& other)
{
data_[ 0 ] += other.data_[ 0 ];
data_[ 1 ] += other.data_[ 1 ];
data_[ 2 ] += other.data_[ 2 ];
data_[ 3 ] += other.data_[ 3 ];
data_[ 4 ] += other.data_[ 4 ];
data_[ 5 ] += other.data_[ 5 ];
data_[ 6 ] += other.data_[ 6 ];
data_[ 7 ] += other.data_[ 7 ];
data_[ 8 ] += other.data_[ 8 ];
data_[ 9 ] += other.data_[ 9 ];
data_[ 10 ] += other.data_[ 10 ];
data_[ 11 ] += other.data_[ 11 ];
data_[ 12 ] += other.data_[ 12 ];
return *this;
}
// add value from other to this values
template <class RhsValueType>
Evaluation& operator+=(const RhsValueType& other)
{
// value is added, derivatives stay the same
data_[valuepos_] += other;
return *this;
}
// subtract other's value and derivatives from this values
Evaluation& operator-=(const Evaluation& other)
{
// value and derivatives are subtracted
data_[ 0 ] -= other.data_[ 0 ];
data_[ 1 ] -= other.data_[ 1 ];
data_[ 2 ] -= other.data_[ 2 ];
data_[ 3 ] -= other.data_[ 3 ];
data_[ 4 ] -= other.data_[ 4 ];
data_[ 5 ] -= other.data_[ 5 ];
data_[ 6 ] -= other.data_[ 6 ];
data_[ 7 ] -= other.data_[ 7 ];
data_[ 8 ] -= other.data_[ 8 ];
data_[ 9 ] -= other.data_[ 9 ];
data_[ 10 ] -= other.data_[ 10 ];
data_[ 11 ] -= other.data_[ 11 ];
data_[ 12 ] -= other.data_[ 12 ];
return *this;
}
// subtract other's value from this values
template <class RhsValueType>
Evaluation& operator-=(const RhsValueType& other)
{
// for constants, values are subtracted, derivatives stay the same
data_[ valuepos_ ] -= other;
return *this;
}
// multiply values and apply chain rule to derivatives: (u*v)' = (v'u + u'v)
Evaluation& operator*=(const Evaluation& other)
static inline Eval& mulEq(Eval& a, const Eval& b)
{
// while the values are multiplied, the derivatives follow the product rule,
// i.e., (u*v)' = (v'u + u'v).
const ValueType u = value();
const ValueType v = other.value();
const ValueT u = a.value();
const ValueT v = b.value();
data_[ 0 ] = u * v ;
data_[ 1 ] = data_[ 1 ] * v + other.data_[ 1 ] * u;
data_[ 2 ] = data_[ 2 ] * v + other.data_[ 2 ] * u;
data_[ 3 ] = data_[ 3 ] * v + other.data_[ 3 ] * u;
data_[ 4 ] = data_[ 4 ] * v + other.data_[ 4 ] * u;
data_[ 5 ] = data_[ 5 ] * v + other.data_[ 5 ] * u;
data_[ 6 ] = data_[ 6 ] * v + other.data_[ 6 ] * u;
data_[ 7 ] = data_[ 7 ] * v + other.data_[ 7 ] * u;
data_[ 8 ] = data_[ 8 ] * v + other.data_[ 8 ] * u;
data_[ 9 ] = data_[ 9 ] * v + other.data_[ 9 ] * u;
data_[ 10 ] = data_[ 10 ] * v + other.data_[ 10 ] * u;
data_[ 11 ] = data_[ 11 ] * v + other.data_[ 11 ] * u;
data_[ 12 ] = data_[ 12 ] * v + other.data_[ 12 ] * u;
// value
a.data_[0] *= v ;
return *this;
// derivatives
a.data_[1] = a.data_[1]*v + b.data_[1] * u;
a.data_[2] = a.data_[2]*v + b.data_[2] * u;
a.data_[3] = a.data_[3]*v + b.data_[3] * u;
a.data_[4] = a.data_[4]*v + b.data_[4] * u;
a.data_[5] = a.data_[5]*v + b.data_[5] * u;
a.data_[6] = a.data_[6]*v + b.data_[6] * u;
a.data_[7] = a.data_[7]*v + b.data_[7] * u;
a.data_[8] = a.data_[8]*v + b.data_[8] * u;
a.data_[9] = a.data_[9]*v + b.data_[9] * u;
a.data_[10] = a.data_[10]*v + b.data_[10] * u;
a.data_[11] = a.data_[11]*v + b.data_[11] * u;
a.data_[12] = a.data_[12]*v + b.data_[12] * u;
return a;
}
template <class RhsType>
static inline Eval& scalarMulEq(Eval& a, const RhsType& other)
{
a.data_[0] *= other;
a.data_[1] *= other;
a.data_[2] *= other;
a.data_[3] *= other;
a.data_[4] *= other;
a.data_[5] *= other;
a.data_[6] *= other;
a.data_[7] *= other;
a.data_[8] *= other;
a.data_[9] *= other;
a.data_[10] *= other;
a.data_[11] *= other;
a.data_[12] *= other;
return a;
}
static inline Eval& divEq(Eval& a, const Eval& b)
{
// values are divided, derivatives follow the rule for division, i.e., (u/v)' = (v'u - u'v)/v^2.
const ValueT v_vv = 1.0 / b.value();
const ValueT u_vv = a.value() * v_vv * v_vv;
// value
a.data_[0] *= v_vv;
// derivatives
a.data_[1] = a.data_[1]*v_vv - b.data_[1]*u_vv;
a.data_[2] = a.data_[2]*v_vv - b.data_[2]*u_vv;
a.data_[3] = a.data_[3]*v_vv - b.data_[3]*u_vv;
a.data_[4] = a.data_[4]*v_vv - b.data_[4]*u_vv;
a.data_[5] = a.data_[5]*v_vv - b.data_[5]*u_vv;
a.data_[6] = a.data_[6]*v_vv - b.data_[6]*u_vv;
a.data_[7] = a.data_[7]*v_vv - b.data_[7]*u_vv;
a.data_[8] = a.data_[8]*v_vv - b.data_[8]*u_vv;
a.data_[9] = a.data_[9]*v_vv - b.data_[9]*u_vv;
a.data_[10] = a.data_[10]*v_vv - b.data_[10]*u_vv;
a.data_[11] = a.data_[11]*v_vv - b.data_[11]*u_vv;
a.data_[12] = a.data_[12]*v_vv - b.data_[12]*u_vv;
return a;
}
template <class RhsType>
static inline Eval& scalarDivEq(Eval& a, const RhsType& other)
{
a.data_[0] /= other;
a.data_[1] /= other;
a.data_[2] /= other;
a.data_[3] /= other;
a.data_[4] /= other;
a.data_[5] /= other;
a.data_[6] /= other;
a.data_[7] /= other;
a.data_[8] /= other;
a.data_[9] /= other;
a.data_[10] /= other;
a.data_[11] /= other;
a.data_[12] /= other;
return a;
}
// m(u*v)' = (v'u + u'v)
template <class RhsValueType>
Evaluation& operator*=(RhsValueType other)
static inline Eval devide(const RhsValueType& a, const Eval& b)
{
data_[ 0 ] *= other;
data_[ 1 ] *= other;
data_[ 2 ] *= other;
data_[ 3 ] *= other;
data_[ 4 ] *= other;
data_[ 5 ] *= other;
data_[ 6 ] *= other;
data_[ 7 ] *= other;
data_[ 8 ] *= other;
data_[ 9 ] *= other;
data_[ 10 ] *= other;
data_[ 11 ] *= other;
data_[ 12 ] *= other;
Eval result;
result.setValue( a/b.value() );
const ValueT df_dg = - result.value()/b.value();
return *this;
}
// m(u*v)' = (v'u + u'v)
Evaluation& operator/=(const Evaluation& other)
{
// values are divided, derivatives follow the rule for division, i.e., (u/v)' = (v'u -
// u'v)/v^2.
const ValueType v_vv = 1.0 / other.value();
const ValueType u_vv = value() * v_vv * v_vv;
data_[ 0 ] *= v_vv;
data_[ 1 ] = data_[ 1 ] * v_vv - other.data_[ 1 ] * u_vv ;
data_[ 2 ] = data_[ 2 ] * v_vv - other.data_[ 2 ] * u_vv ;
data_[ 3 ] = data_[ 3 ] * v_vv - other.data_[ 3 ] * u_vv ;
data_[ 4 ] = data_[ 4 ] * v_vv - other.data_[ 4 ] * u_vv ;
data_[ 5 ] = data_[ 5 ] * v_vv - other.data_[ 5 ] * u_vv ;
data_[ 6 ] = data_[ 6 ] * v_vv - other.data_[ 6 ] * u_vv ;
data_[ 7 ] = data_[ 7 ] * v_vv - other.data_[ 7 ] * u_vv ;
data_[ 8 ] = data_[ 8 ] * v_vv - other.data_[ 8 ] * u_vv ;
data_[ 9 ] = data_[ 9 ] * v_vv - other.data_[ 9 ] * u_vv ;
data_[ 10 ] = data_[ 10 ] * v_vv - other.data_[ 10 ] * u_vv ;
data_[ 11 ] = data_[ 11 ] * v_vv - other.data_[ 11 ] * u_vv ;
data_[ 12 ] = data_[ 12 ] * v_vv - other.data_[ 12 ] * u_vv ;
return *this;
}
// multiply value and derivatives by value of other
template <class RhsValueType>
Evaluation& operator/=(const RhsValueType& other)
{
// values and derivatives are divided
ValueType factor = (1.0/other);
data_[ 0 ] *= factor;
data_[ 1 ] *= factor;
data_[ 2 ] *= factor;
data_[ 3 ] *= factor;
data_[ 4 ] *= factor;
data_[ 5 ] *= factor;
data_[ 6 ] *= factor;
data_[ 7 ] *= factor;
data_[ 8 ] *= factor;
data_[ 9 ] *= factor;
data_[ 10 ] *= factor;
data_[ 11 ] *= factor;
data_[ 12 ] *= factor;
return *this;
}
// add two evaluation objects
Evaluation operator+(const Evaluation& other) const
{
Evaluation result(*this);
result += other;
return result;
}
// add constant to this object
template <class RhsValueType>
Evaluation operator+(const RhsValueType& other) const
{
Evaluation result(*this);
result += other;
return result;
}
// subtract two evaluation objects
Evaluation operator-(const Evaluation& other) const
{
Evaluation result(*this);
result -= other;
return result;
}
// subtract constant from evaluation object
template <class RhsValueType>
Evaluation operator-(const RhsValueType& other) const
{
Evaluation result(*this);
result -= other;
return result;
}
// negation (unary minus) operator
Evaluation operator-() const
{
Evaluation result;
// set value and derivatives to negative
for (int idx = 0; idx < length_; ++idx)
result.data_[idx] = - data_[idx];
result.data_[1] = df_dg*b.data_[1];
result.data_[2] = df_dg*b.data_[2];
result.data_[3] = df_dg*b.data_[3];
result.data_[4] = df_dg*b.data_[4];
result.data_[5] = df_dg*b.data_[5];
result.data_[6] = df_dg*b.data_[6];
result.data_[7] = df_dg*b.data_[7];
result.data_[8] = df_dg*b.data_[8];
result.data_[9] = df_dg*b.data_[9];
result.data_[10] = df_dg*b.data_[10];
result.data_[11] = df_dg*b.data_[11];
result.data_[12] = df_dg*b.data_[12];
return result;
}
Evaluation operator*(const Evaluation& other) const
{
Evaluation result(*this);
result *= other;
return result;
}
template <class RhsValueType>
Evaluation operator*(const RhsValueType& other) const
{
Evaluation result(*this);
result *= other;
return result;
}
Evaluation operator/(const Evaluation& other) const
{
Evaluation result(*this);
result /= other;
return result;
}
template <class RhsValueType>
Evaluation operator/(const RhsValueType& other) const
{
Evaluation result(*this);
result /= other;
return result;
}
template <class RhsValueType>
Evaluation& operator=(const RhsValueType& other)
{
setValue( other );
clearDerivatives();
return *this;
}
// copy assignment from evaluation
Evaluation& operator=(const Evaluation& other)
{
data_ = other.data_;
return *this;
}
template <class RhsValueType>
bool operator==(const RhsValueType& other) const
{ return value() == other; }
bool operator==(const Evaluation& other) const
{
for (int idx = 0; idx < length_; ++idx)
if (data_[idx] != other.data_[idx])
return false;
return true;
}
bool operator!=(const Evaluation& other) const
{ return !operator==(other); }
template <class RhsValueType>
bool operator>(RhsValueType other) const
{ return value() > other; }
bool operator>(const Evaluation& other) const
{ return value() > other.value(); }
template <class RhsValueType>
bool operator<(RhsValueType other) const
{ return value() < other; }
bool operator<(const Evaluation& other) const
{ return value() < other.value(); }
template <class RhsValueType>
bool operator>=(RhsValueType other) const
{ return value() >= other; }
bool operator>=(const Evaluation& other) const
{ return value() >= other.value(); }
template <class RhsValueType>
bool operator<=(RhsValueType other) const
{ return value() <= other; }
bool operator<=(const Evaluation& other) const
{ return value() <= other.value(); }
// return value of variable
const ValueType& value() const
{ return data_[valuepos_]; }
// set value of variable
void setValue(const ValueType& val)
{ data_[valuepos_] = val; }
// return varIdx'th derivative
const ValueType& derivative(int varIdx) const
{
assert(varIdx < numVars);
return data_[varIdx + dstart_];
}
// set derivative at position varIdx
void setDerivative(int varIdx, const ValueType& derVal)
{
assert(varIdx < numVars);
data_[varIdx + dstart_] = derVal;
}
protected:
std::array<ValueType, length_> data_;
};
} // namespace DenseAD
} // namespace Dune
} } // namespace DenseAd, Opm
// #include <opm/material/densead/EvaluationSIMD.hpp>
#endif
#endif // OPM_DENSEAD_EVALUATION12_HPP

View File

@ -23,403 +23,136 @@
/*!
* \file
*
* \brief Representation of an evaluation of a function and its derivatives w.r.t. a set
* of variables in the localized OPM automatic differentiation (AD) framework.
* \brief This file specializes the dense-AD Evaluation class for 2 derivatives.
*
* \attention THIS FILE GETS AUTOMATICALLY GENERATED BY THE "genEvalSpecializations.py"
* SCRIPT. DO NOT EDIT IT MANUALLY!
*/
#ifndef OPM_LOCAL_AD_EVALUATION_2_HPP
#define OPM_LOCAL_AD_EVALUATION_2_HPP
#include "Math.hpp"
#include <opm/common/Valgrind.hpp>
#include <dune/common/version.hh>
#include <array>
#include <cmath>
#include <cassert>
#include <iostream>
#include <algorithm>
#ifndef OPM_DENSEAD_EVALUATION2_HPP
#define OPM_DENSEAD_EVALUATION2_HPP
namespace Opm {
namespace DenseAd {
/*!
* \brief Represents a function evaluation and its derivatives w.r.t. a fixed set of
* variables.
*/
template <class ValueT>
class Evaluation< ValueT, 2 >
struct EvaluationOps<ValueT, 2>
{
static constexpr int numVars = 2;
private:
typedef Evaluation<ValueT, 2 > Eval;
public:
//! field type
typedef ValueT ValueType;
//! number of derivatives
static constexpr int size = numVars;
protected:
//! length of internal data vector
static constexpr int length_ = numVars + 1 ;
//! position index for value
static constexpr int valuepos_ = 0;
//! start index for derivatives
static constexpr int dstart_ = 1;
//! end+1 index for derivatives
static constexpr int dend_ = length_ ;
public:
//! default constructor
Evaluation() : data_()
{}
//! copy other function evaluation
Evaluation(const Evaluation& other) : data_( other.data_ )
static inline void assign(Eval& a, const Eval& b)
{
a.data_[0] = b.data_[0];
a.data_[1] = b.data_[1];
a.data_[2] = b.data_[2];
}
// create an evaluation which represents a constant function
//
// i.e., f(x) = c. this implies an evaluation with the given value and all
// derivatives being zero.
template <class RhsValueType>
Evaluation(const RhsValueType& c)
static inline void assignNegative(Eval& a, const Eval& b)
{
setValue( c );
clearDerivatives();
Valgrind::CheckDefined( data_ );
a.data_[0] = - b.data_[0];
a.data_[1] = - b.data_[1];
a.data_[2] = - b.data_[2];
}
// create an evaluation which represents a constant function
//
// i.e., f(x) = c. this implies an evaluation with the given value and all
// derivatives being zero.
template <class RhsValueType>
Evaluation(const RhsValueType& c, int varPos)
static inline void clearDerivatives(Eval& a)
{
setValue( c );
clearDerivatives();
// The variable position must be in represented by the given variable descriptor
assert(0 <= varPos && varPos < numVars);
data_[varPos + dstart_] = 1.0;
Valgrind::CheckDefined(data_);
a.data_[1] = 0.0;
a.data_[2] = 0.0;
}
// set all derivatives to zero
void clearDerivatives()
static inline Eval& addEq(Eval& a, const Eval& b)
{
data_[ 1 ] = 0;
data_[ 2 ] = 0;
a.data_[0] += b.data_[0];
a.data_[1] += b.data_[1];
a.data_[2] += b.data_[2];
return a;
}
// create a function evaluation for a "naked" depending variable (i.e., f(x) = x)
template <class RhsValueType>
static Evaluation devide(const RhsValueType& a, const Evaluation& b )
static inline Eval& subEq(Eval& a, const Eval& b)
{
Evaluation<ValueType, numVars> result;
result.setValue( a/b.value() );
const ValueType df_dg = - result.value()/b.value();
for (int idx = dstart_; idx < dend_; ++idx) {
result.data_[idx] = df_dg*b.data_[idx];
}
return result;
a.data_[0] -= b.data_[0];
a.data_[1] -= b.data_[1];
a.data_[2] -= b.data_[2];
return a;
}
// create a function evaluation for a "naked" depending variable (i.e., f(x) = x)
template <class RhsValueType>
static Evaluation createVariable(const RhsValueType& value, int varPos)
{
// copy function value and set all derivatives to 0, except for the variable
// which is represented by the value (which is set to 1.0)
return Evaluation( value, varPos );
}
// "evaluate" a constant function (i.e. a function that does not depend on the set of
// relevant variables, f(x) = c).
template <class RhsValueType>
static Evaluation createConstant(const RhsValueType& value)
{
return Evaluation( value );
}
// print the value and the derivatives of the function evaluation
void print(std::ostream& os = std::cout) const
{
// print value
os << "v: " << value() << " / d:";
// print derivatives
for (int varIdx = 0; varIdx < numVars; ++varIdx)
os << " " << derivative(varIdx);
}
// copy all derivatives from other
void copyDerivatives(const Evaluation& other)
{
data_[ 1 ] = other.data_[ 1 ];
data_[ 2 ] = other.data_[ 2 ];
}
// add value and derivatives from other to this values and derivatives
Evaluation& operator+=(const Evaluation& other)
{
data_[ 0 ] += other.data_[ 0 ];
data_[ 1 ] += other.data_[ 1 ];
data_[ 2 ] += other.data_[ 2 ];
return *this;
}
// add value from other to this values
template <class RhsValueType>
Evaluation& operator+=(const RhsValueType& other)
{
// value is added, derivatives stay the same
data_[valuepos_] += other;
return *this;
}
// subtract other's value and derivatives from this values
Evaluation& operator-=(const Evaluation& other)
{
// value and derivatives are subtracted
data_[ 0 ] -= other.data_[ 0 ];
data_[ 1 ] -= other.data_[ 1 ];
data_[ 2 ] -= other.data_[ 2 ];
return *this;
}
// subtract other's value from this values
template <class RhsValueType>
Evaluation& operator-=(const RhsValueType& other)
{
// for constants, values are subtracted, derivatives stay the same
data_[ valuepos_ ] -= other;
return *this;
}
// multiply values and apply chain rule to derivatives: (u*v)' = (v'u + u'v)
Evaluation& operator*=(const Evaluation& other)
static inline Eval& mulEq(Eval& a, const Eval& b)
{
// while the values are multiplied, the derivatives follow the product rule,
// i.e., (u*v)' = (v'u + u'v).
const ValueType u = value();
const ValueType v = other.value();
const ValueT u = a.value();
const ValueT v = b.value();
data_[ 0 ] = u * v ;
data_[ 1 ] = data_[ 1 ] * v + other.data_[ 1 ] * u;
data_[ 2 ] = data_[ 2 ] * v + other.data_[ 2 ] * u;
// value
a.data_[0] *= v ;
return *this;
// derivatives
a.data_[1] = a.data_[1]*v + b.data_[1] * u;
a.data_[2] = a.data_[2]*v + b.data_[2] * u;
return a;
}
template <class RhsType>
static inline Eval& scalarMulEq(Eval& a, const RhsType& other)
{
a.data_[0] *= other;
a.data_[1] *= other;
a.data_[2] *= other;
return a;
}
static inline Eval& divEq(Eval& a, const Eval& b)
{
// values are divided, derivatives follow the rule for division, i.e., (u/v)' = (v'u - u'v)/v^2.
const ValueT v_vv = 1.0 / b.value();
const ValueT u_vv = a.value() * v_vv * v_vv;
// value
a.data_[0] *= v_vv;
// derivatives
a.data_[1] = a.data_[1]*v_vv - b.data_[1]*u_vv;
a.data_[2] = a.data_[2]*v_vv - b.data_[2]*u_vv;
return a;
}
template <class RhsType>
static inline Eval& scalarDivEq(Eval& a, const RhsType& other)
{
a.data_[0] /= other;
a.data_[1] /= other;
a.data_[2] /= other;
return a;
}
// m(u*v)' = (v'u + u'v)
template <class RhsValueType>
Evaluation& operator*=(RhsValueType other)
static inline Eval devide(const RhsValueType& a, const Eval& b)
{
data_[ 0 ] *= other;
data_[ 1 ] *= other;
data_[ 2 ] *= other;
return *this;
}
Eval result;
result.setValue( a/b.value() );
const ValueT df_dg = - result.value()/b.value();
// m(u*v)' = (v'u + u'v)
Evaluation& operator/=(const Evaluation& other)
{
// values are divided, derivatives follow the rule for division, i.e., (u/v)' = (v'u -
// u'v)/v^2.
const ValueType v_vv = 1.0 / other.value();
const ValueType u_vv = value() * v_vv * v_vv;
data_[ 0 ] *= v_vv;
data_[ 1 ] = data_[ 1 ] * v_vv - other.data_[ 1 ] * u_vv ;
data_[ 2 ] = data_[ 2 ] * v_vv - other.data_[ 2 ] * u_vv ;
return *this;
}
// multiply value and derivatives by value of other
template <class RhsValueType>
Evaluation& operator/=(const RhsValueType& other)
{
// values and derivatives are divided
ValueType factor = (1.0/other);
data_[ 0 ] *= factor;
data_[ 1 ] *= factor;
data_[ 2 ] *= factor;
return *this;
}
// add two evaluation objects
Evaluation operator+(const Evaluation& other) const
{
Evaluation result(*this);
result += other;
return result;
}
// add constant to this object
template <class RhsValueType>
Evaluation operator+(const RhsValueType& other) const
{
Evaluation result(*this);
result += other;
return result;
}
// subtract two evaluation objects
Evaluation operator-(const Evaluation& other) const
{
Evaluation result(*this);
result -= other;
return result;
}
// subtract constant from evaluation object
template <class RhsValueType>
Evaluation operator-(const RhsValueType& other) const
{
Evaluation result(*this);
result -= other;
return result;
}
// negation (unary minus) operator
Evaluation operator-() const
{
Evaluation result;
// set value and derivatives to negative
for (int idx = 0; idx < length_; ++idx)
result.data_[idx] = - data_[idx];
result.data_[1] = df_dg*b.data_[1];
result.data_[2] = df_dg*b.data_[2];
return result;
}
Evaluation operator*(const Evaluation& other) const
{
Evaluation result(*this);
result *= other;
return result;
}
template <class RhsValueType>
Evaluation operator*(const RhsValueType& other) const
{
Evaluation result(*this);
result *= other;
return result;
}
Evaluation operator/(const Evaluation& other) const
{
Evaluation result(*this);
result /= other;
return result;
}
template <class RhsValueType>
Evaluation operator/(const RhsValueType& other) const
{
Evaluation result(*this);
result /= other;
return result;
}
template <class RhsValueType>
Evaluation& operator=(const RhsValueType& other)
{
setValue( other );
clearDerivatives();
return *this;
}
// copy assignment from evaluation
Evaluation& operator=(const Evaluation& other)
{
data_ = other.data_;
return *this;
}
template <class RhsValueType>
bool operator==(const RhsValueType& other) const
{ return value() == other; }
bool operator==(const Evaluation& other) const
{
for (int idx = 0; idx < length_; ++idx)
if (data_[idx] != other.data_[idx])
return false;
return true;
}
bool operator!=(const Evaluation& other) const
{ return !operator==(other); }
template <class RhsValueType>
bool operator>(RhsValueType other) const
{ return value() > other; }
bool operator>(const Evaluation& other) const
{ return value() > other.value(); }
template <class RhsValueType>
bool operator<(RhsValueType other) const
{ return value() < other; }
bool operator<(const Evaluation& other) const
{ return value() < other.value(); }
template <class RhsValueType>
bool operator>=(RhsValueType other) const
{ return value() >= other; }
bool operator>=(const Evaluation& other) const
{ return value() >= other.value(); }
template <class RhsValueType>
bool operator<=(RhsValueType other) const
{ return value() <= other; }
bool operator<=(const Evaluation& other) const
{ return value() <= other.value(); }
// return value of variable
const ValueType& value() const
{ return data_[valuepos_]; }
// set value of variable
void setValue(const ValueType& val)
{ data_[valuepos_] = val; }
// return varIdx'th derivative
const ValueType& derivative(int varIdx) const
{
assert(varIdx < numVars);
return data_[varIdx + dstart_];
}
// set derivative at position varIdx
void setDerivative(int varIdx, const ValueType& derVal)
{
assert(varIdx < numVars);
data_[varIdx + dstart_] = derVal;
}
protected:
std::array<ValueType, length_> data_;
};
} // namespace DenseAD
} // namespace Dune
} } // namespace DenseAd, Opm
// #include <opm/material/densead/EvaluationSIMD.hpp>
#endif
#endif // OPM_DENSEAD_EVALUATION2_HPP

View File

@ -23,413 +23,146 @@
/*!
* \file
*
* \brief Representation of an evaluation of a function and its derivatives w.r.t. a set
* of variables in the localized OPM automatic differentiation (AD) framework.
* \brief This file specializes the dense-AD Evaluation class for 3 derivatives.
*
* \attention THIS FILE GETS AUTOMATICALLY GENERATED BY THE "genEvalSpecializations.py"
* SCRIPT. DO NOT EDIT IT MANUALLY!
*/
#ifndef OPM_LOCAL_AD_EVALUATION_3_HPP
#define OPM_LOCAL_AD_EVALUATION_3_HPP
#include "Math.hpp"
#include <opm/common/Valgrind.hpp>
#include <dune/common/version.hh>
#include <array>
#include <cmath>
#include <cassert>
#include <iostream>
#include <algorithm>
#ifndef OPM_DENSEAD_EVALUATION3_HPP
#define OPM_DENSEAD_EVALUATION3_HPP
namespace Opm {
namespace DenseAd {
/*!
* \brief Represents a function evaluation and its derivatives w.r.t. a fixed set of
* variables.
*/
template <class ValueT>
class Evaluation< ValueT, 3 >
struct EvaluationOps<ValueT, 3>
{
static constexpr int numVars = 3;
private:
typedef Evaluation<ValueT, 3 > Eval;
public:
//! field type
typedef ValueT ValueType;
//! number of derivatives
static constexpr int size = numVars;
protected:
//! length of internal data vector
static constexpr int length_ = numVars + 1 ;
//! position index for value
static constexpr int valuepos_ = 0;
//! start index for derivatives
static constexpr int dstart_ = 1;
//! end+1 index for derivatives
static constexpr int dend_ = length_ ;
public:
//! default constructor
Evaluation() : data_()
{}
//! copy other function evaluation
Evaluation(const Evaluation& other) //: data_( other.data_ )
static inline void assign(Eval& a, const Eval& b)
{
data_[ 0 ] = other.data_[ 0 ];
data_[ 1 ] = other.data_[ 1 ];
data_[ 2 ] = other.data_[ 2 ];
data_[ 3 ] = other.data_[ 3 ];
a.data_[0] = b.data_[0];
a.data_[1] = b.data_[1];
a.data_[2] = b.data_[2];
a.data_[3] = b.data_[3];
}
// create an evaluation which represents a constant function
//
// i.e., f(x) = c. this implies an evaluation with the given value and all
// derivatives being zero.
template <class RhsValueType>
Evaluation(const RhsValueType& c)
static inline void assignNegative(Eval& a, const Eval& b)
{
setValue( c );
clearDerivatives();
Valgrind::CheckDefined( data_ );
a.data_[0] = - b.data_[0];
a.data_[1] = - b.data_[1];
a.data_[2] = - b.data_[2];
a.data_[3] = - b.data_[3];
}
// create an evaluation which represents a constant function
//
// i.e., f(x) = c. this implies an evaluation with the given value and all
// derivatives being zero.
template <class RhsValueType>
Evaluation(const RhsValueType& c, int varPos)
static inline void clearDerivatives(Eval& a)
{
setValue( c );
clearDerivatives();
// The variable position must be in represented by the given variable descriptor
assert(0 <= varPos && varPos < numVars);
data_[varPos + dstart_] = 1.0;
Valgrind::CheckDefined(data_);
a.data_[1] = 0.0;
a.data_[2] = 0.0;
a.data_[3] = 0.0;
}
// set all derivatives to zero
void clearDerivatives()
static inline Eval& addEq(Eval& a, const Eval& b)
{
data_[ 1 ] = 0;
data_[ 2 ] = 0;
data_[ 3 ] = 0;
a.data_[0] += b.data_[0];
a.data_[1] += b.data_[1];
a.data_[2] += b.data_[2];
a.data_[3] += b.data_[3];
return a;
}
// create a function evaluation for a "naked" depending variable (i.e., f(x) = x)
template <class RhsValueType>
static Evaluation devide(const RhsValueType& a, const Evaluation& b )
static inline Eval& subEq(Eval& a, const Eval& b)
{
Evaluation<ValueType, numVars> result;
result.setValue( a/b.value() );
const ValueType df_dg = - result.value()/b.value();
result.data_[ 1 ] = df_dg*b.data_[ 1 ];
result.data_[ 2 ] = df_dg*b.data_[ 2 ];
result.data_[ 3 ] = df_dg*b.data_[ 3 ];
return result;
a.data_[0] -= b.data_[0];
a.data_[1] -= b.data_[1];
a.data_[2] -= b.data_[2];
a.data_[3] -= b.data_[3];
return a;
}
// create a function evaluation for a "naked" depending variable (i.e., f(x) = x)
template <class RhsValueType>
static Evaluation createVariable(const RhsValueType& value, int varPos)
{
// copy function value and set all derivatives to 0, except for the variable
// which is represented by the value (which is set to 1.0)
return Evaluation( value, varPos );
}
// "evaluate" a constant function (i.e. a function that does not depend on the set of
// relevant variables, f(x) = c).
template <class RhsValueType>
static Evaluation createConstant(const RhsValueType& value)
{
return Evaluation( value );
}
// print the value and the derivatives of the function evaluation
void print(std::ostream& os = std::cout) const
{
// print value
os << "v: " << value() << " / d:";
// print derivatives
for (int varIdx = 0; varIdx < numVars; ++varIdx)
os << " " << derivative(varIdx);
}
// copy all derivatives from other
void copyDerivatives(const Evaluation& other)
{
data_[ 1 ] = other.data_[ 1 ];
data_[ 2 ] = other.data_[ 2 ];
data_[ 3 ] = other.data_[ 3 ];
}
// add value and derivatives from other to this values and derivatives
Evaluation& operator+=(const Evaluation& other)
{
data_[ 0 ] += other.data_[ 0 ];
data_[ 1 ] += other.data_[ 1 ];
data_[ 2 ] += other.data_[ 2 ];
data_[ 3 ] += other.data_[ 3 ];
return *this;
}
// add value from other to this values
template <class RhsValueType>
Evaluation& operator+=(const RhsValueType& other)
{
// value is added, derivatives stay the same
data_[valuepos_] += other;
return *this;
}
// subtract other's value and derivatives from this values
Evaluation& operator-=(const Evaluation& other)
{
// value and derivatives are subtracted
data_[ 0 ] -= other.data_[ 0 ];
data_[ 1 ] -= other.data_[ 1 ];
data_[ 2 ] -= other.data_[ 2 ];
data_[ 3 ] -= other.data_[ 3 ];
return *this;
}
// subtract other's value from this values
template <class RhsValueType>
Evaluation& operator-=(const RhsValueType& other)
{
// for constants, values are subtracted, derivatives stay the same
data_[ valuepos_ ] -= other;
return *this;
}
// multiply values and apply chain rule to derivatives: (u*v)' = (v'u + u'v)
Evaluation& operator*=(const Evaluation& other)
static inline Eval& mulEq(Eval& a, const Eval& b)
{
// while the values are multiplied, the derivatives follow the product rule,
// i.e., (u*v)' = (v'u + u'v).
const ValueType u = value();
const ValueType v = other.value();
const ValueT u = a.value();
const ValueT v = b.value();
data_[ 0 ] *= v ;
data_[ 1 ] = data_[ 1 ] * v + other.data_[ 1 ] * u;
data_[ 2 ] = data_[ 2 ] * v + other.data_[ 2 ] * u;
data_[ 3 ] = data_[ 3 ] * v + other.data_[ 3 ] * u;
// value
a.data_[0] *= v ;
return *this;
// derivatives
a.data_[1] = a.data_[1]*v + b.data_[1] * u;
a.data_[2] = a.data_[2]*v + b.data_[2] * u;
a.data_[3] = a.data_[3]*v + b.data_[3] * u;
return a;
}
template <class RhsType>
static inline Eval& scalarMulEq(Eval& a, const RhsType& other)
{
a.data_[0] *= other;
a.data_[1] *= other;
a.data_[2] *= other;
a.data_[3] *= other;
return a;
}
static inline Eval& divEq(Eval& a, const Eval& b)
{
// values are divided, derivatives follow the rule for division, i.e., (u/v)' = (v'u - u'v)/v^2.
const ValueT v_vv = 1.0 / b.value();
const ValueT u_vv = a.value() * v_vv * v_vv;
// value
a.data_[0] *= v_vv;
// derivatives
a.data_[1] = a.data_[1]*v_vv - b.data_[1]*u_vv;
a.data_[2] = a.data_[2]*v_vv - b.data_[2]*u_vv;
a.data_[3] = a.data_[3]*v_vv - b.data_[3]*u_vv;
return a;
}
template <class RhsType>
static inline Eval& scalarDivEq(Eval& a, const RhsType& other)
{
a.data_[0] /= other;
a.data_[1] /= other;
a.data_[2] /= other;
a.data_[3] /= other;
return a;
}
// m(u*v)' = (v'u + u'v)
template <class RhsValueType>
Evaluation& operator*=(RhsValueType other)
static inline Eval devide(const RhsValueType& a, const Eval& b)
{
data_[ 0 ] *= other;
data_[ 1 ] *= other;
data_[ 2 ] *= other;
data_[ 3 ] *= other;
Eval result;
result.setValue( a/b.value() );
const ValueT df_dg = - result.value()/b.value();
return *this;
}
// m(u*v)' = (v'u + u'v)
Evaluation& operator/=(const Evaluation& other)
{
// values are divided, derivatives follow the rule for division, i.e., (u/v)' = (v'u -
// u'v)/v^2.
const ValueType v_vv = 1.0 / other.value();
const ValueType u_vv = value() * v_vv * v_vv;
data_[ 0 ] *= v_vv;
data_[ 1 ] = data_[ 1 ] * v_vv - other.data_[ 1 ] * u_vv ;
data_[ 2 ] = data_[ 2 ] * v_vv - other.data_[ 2 ] * u_vv ;
data_[ 3 ] = data_[ 3 ] * v_vv - other.data_[ 3 ] * u_vv ;
return *this;
}
// multiply value and derivatives by value of other
template <class RhsValueType>
Evaluation& operator/=(const RhsValueType& other)
{
// values and derivatives are divided
const ValueType factor = (1.0/other);
return this->operator*=( factor );
}
// add two evaluation objects
Evaluation operator+(const Evaluation& other) const
{
Evaluation result(*this);
result += other;
return result;
}
// add constant to this object
template <class RhsValueType>
Evaluation operator+(const RhsValueType& other) const
{
Evaluation result(*this);
result += other;
return result;
}
// subtract two evaluation objects
Evaluation operator-(const Evaluation& other) const
{
Evaluation result(*this);
result -= other;
return result;
}
// subtract constant from evaluation object
template <class RhsValueType>
Evaluation operator-(const RhsValueType& other) const
{
Evaluation result(*this);
result -= other;
return result;
}
// negation (unary minus) operator
Evaluation operator-() const
{
Evaluation result;
// set value and derivatives to negative
for (int idx = 0; idx < length_; ++idx)
result.data_[idx] = - data_[idx];
result.data_[1] = df_dg*b.data_[1];
result.data_[2] = df_dg*b.data_[2];
result.data_[3] = df_dg*b.data_[3];
return result;
}
Evaluation operator*(const Evaluation& other) const
{
Evaluation result(*this);
result *= other;
return result;
}
template <class RhsValueType>
Evaluation operator*(const RhsValueType& other) const
{
Evaluation result(*this);
result *= other;
return result;
}
Evaluation operator/(const Evaluation& other) const
{
Evaluation result(*this);
result /= other;
return result;
}
template <class RhsValueType>
Evaluation operator/(const RhsValueType& other) const
{
Evaluation result(*this);
result /= other;
return result;
}
template <class RhsValueType>
Evaluation& operator=(const RhsValueType& other)
{
setValue( other );
clearDerivatives();
return *this;
}
// copy assignment from evaluation
Evaluation& operator=(const Evaluation& other)
{
data_ = other.data_;
return *this;
}
template <class RhsValueType>
bool operator==(const RhsValueType& other) const
{ return value() == other; }
bool operator==(const Evaluation& other) const
{
for (int idx = 0; idx < length_; ++idx)
if (data_[idx] != other.data_[idx])
return false;
return true;
}
bool operator!=(const Evaluation& other) const
{ return !operator==(other); }
template <class RhsValueType>
bool operator>(const RhsValueType& other) const
{ return value() > other; }
bool operator>(const Evaluation& other) const
{ return value() > other.value(); }
template <class RhsValueType>
bool operator<(const RhsValueType& other) const
{ return value() < other; }
bool operator<(const Evaluation& other) const
{ return value() < other.value(); }
template <class RhsValueType>
bool operator>=(const RhsValueType& other) const
{ return value() >= other; }
bool operator>=(const Evaluation& other) const
{ return value() >= other.value(); }
template <class RhsValueType>
bool operator<=(const RhsValueType& other) const
{ return value() <= other; }
bool operator<=(const Evaluation& other) const
{ return value() <= other.value(); }
// return value of variable
const ValueType& value() const
{ return data_[valuepos_]; }
// set value of variable
void setValue(const ValueType& val)
{ data_[valuepos_] = val; }
// return varIdx'th derivative
const ValueType& derivative(int varIdx) const
{
assert(varIdx < numVars);
return data_[varIdx + dstart_];
}
// set derivative at position varIdx
void setDerivative(int varIdx, const ValueType& derVal)
{
assert(varIdx < numVars);
data_[varIdx + dstart_] = derVal;
}
protected:
std::array<ValueType, length_> data_;
};
} // namespace DenseAD
} // namespace Dune
} } // namespace DenseAd, Opm
// #include <opm/material/densead/EvaluationSIMD.hpp>
#endif
#endif // OPM_DENSEAD_EVALUATION3_HPP

View File

@ -0,0 +1,178 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \brief This file specializes the dense-AD Evaluation class for 4 derivatives.
*
* \attention THIS FILE GETS AUTOMATICALLY GENERATED BY THE "genEvalSpecializations.py"
* SCRIPT. DO NOT EDIT IT MANUALLY!
*/
#ifndef OPM_DENSEAD_EVALUATION4_HPP
#define OPM_DENSEAD_EVALUATION4_HPP
namespace Opm {
namespace DenseAd {
template <class ValueT>
struct EvaluationOps<ValueT, 4>
{
private:
typedef Evaluation<ValueT, 4 > Eval;
public:
static inline void assign(Eval& a, const Eval& b)
{
a.data_[0] = b.data_[0];
a.data_[1] = b.data_[1];
a.data_[2] = b.data_[2];
a.data_[3] = b.data_[3];
a.data_[4] = b.data_[4];
}
static inline void assignNegative(Eval& a, const Eval& b)
{
a.data_[0] = - b.data_[0];
a.data_[1] = - b.data_[1];
a.data_[2] = - b.data_[2];
a.data_[3] = - b.data_[3];
a.data_[4] = - b.data_[4];
}
static inline void clearDerivatives(Eval& a)
{
a.data_[1] = 0.0;
a.data_[2] = 0.0;
a.data_[3] = 0.0;
a.data_[4] = 0.0;
}
static inline Eval& addEq(Eval& a, const Eval& b)
{
a.data_[0] += b.data_[0];
a.data_[1] += b.data_[1];
a.data_[2] += b.data_[2];
a.data_[3] += b.data_[3];
a.data_[4] += b.data_[4];
return a;
}
static inline Eval& subEq(Eval& a, const Eval& b)
{
a.data_[0] -= b.data_[0];
a.data_[1] -= b.data_[1];
a.data_[2] -= b.data_[2];
a.data_[3] -= b.data_[3];
a.data_[4] -= b.data_[4];
return a;
}
static inline Eval& mulEq(Eval& a, const Eval& b)
{
// while the values are multiplied, the derivatives follow the product rule,
// i.e., (u*v)' = (v'u + u'v).
const ValueT u = a.value();
const ValueT v = b.value();
// value
a.data_[0] *= v ;
// derivatives
a.data_[1] = a.data_[1]*v + b.data_[1] * u;
a.data_[2] = a.data_[2]*v + b.data_[2] * u;
a.data_[3] = a.data_[3]*v + b.data_[3] * u;
a.data_[4] = a.data_[4]*v + b.data_[4] * u;
return a;
}
template <class RhsType>
static inline Eval& scalarMulEq(Eval& a, const RhsType& other)
{
a.data_[0] *= other;
a.data_[1] *= other;
a.data_[2] *= other;
a.data_[3] *= other;
a.data_[4] *= other;
return a;
}
static inline Eval& divEq(Eval& a, const Eval& b)
{
// values are divided, derivatives follow the rule for division, i.e., (u/v)' = (v'u - u'v)/v^2.
const ValueT v_vv = 1.0 / b.value();
const ValueT u_vv = a.value() * v_vv * v_vv;
// value
a.data_[0] *= v_vv;
// derivatives
a.data_[1] = a.data_[1]*v_vv - b.data_[1]*u_vv;
a.data_[2] = a.data_[2]*v_vv - b.data_[2]*u_vv;
a.data_[3] = a.data_[3]*v_vv - b.data_[3]*u_vv;
a.data_[4] = a.data_[4]*v_vv - b.data_[4]*u_vv;
return a;
}
template <class RhsType>
static inline Eval& scalarDivEq(Eval& a, const RhsType& other)
{
a.data_[0] /= other;
a.data_[1] /= other;
a.data_[2] /= other;
a.data_[3] /= other;
a.data_[4] /= other;
return a;
}
template <class RhsValueType>
static inline Eval devide(const RhsValueType& a, const Eval& b)
{
Eval result;
result.setValue( a/b.value() );
const ValueT df_dg = - result.value()/b.value();
result.data_[1] = df_dg*b.data_[1];
result.data_[2] = df_dg*b.data_[2];
result.data_[3] = df_dg*b.data_[3];
result.data_[4] = df_dg*b.data_[4];
return result;
}
};
} } // namespace DenseAd, Opm
#endif // OPM_DENSEAD_EVALUATION4_HPP

View File

@ -0,0 +1,188 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \brief This file specializes the dense-AD Evaluation class for 5 derivatives.
*
* \attention THIS FILE GETS AUTOMATICALLY GENERATED BY THE "genEvalSpecializations.py"
* SCRIPT. DO NOT EDIT IT MANUALLY!
*/
#ifndef OPM_DENSEAD_EVALUATION5_HPP
#define OPM_DENSEAD_EVALUATION5_HPP
namespace Opm {
namespace DenseAd {
template <class ValueT>
struct EvaluationOps<ValueT, 5>
{
private:
typedef Evaluation<ValueT, 5 > Eval;
public:
static inline void assign(Eval& a, const Eval& b)
{
a.data_[0] = b.data_[0];
a.data_[1] = b.data_[1];
a.data_[2] = b.data_[2];
a.data_[3] = b.data_[3];
a.data_[4] = b.data_[4];
a.data_[5] = b.data_[5];
}
static inline void assignNegative(Eval& a, const Eval& b)
{
a.data_[0] = - b.data_[0];
a.data_[1] = - b.data_[1];
a.data_[2] = - b.data_[2];
a.data_[3] = - b.data_[3];
a.data_[4] = - b.data_[4];
a.data_[5] = - b.data_[5];
}
static inline void clearDerivatives(Eval& a)
{
a.data_[1] = 0.0;
a.data_[2] = 0.0;
a.data_[3] = 0.0;
a.data_[4] = 0.0;
a.data_[5] = 0.0;
}
static inline Eval& addEq(Eval& a, const Eval& b)
{
a.data_[0] += b.data_[0];
a.data_[1] += b.data_[1];
a.data_[2] += b.data_[2];
a.data_[3] += b.data_[3];
a.data_[4] += b.data_[4];
a.data_[5] += b.data_[5];
return a;
}
static inline Eval& subEq(Eval& a, const Eval& b)
{
a.data_[0] -= b.data_[0];
a.data_[1] -= b.data_[1];
a.data_[2] -= b.data_[2];
a.data_[3] -= b.data_[3];
a.data_[4] -= b.data_[4];
a.data_[5] -= b.data_[5];
return a;
}
static inline Eval& mulEq(Eval& a, const Eval& b)
{
// while the values are multiplied, the derivatives follow the product rule,
// i.e., (u*v)' = (v'u + u'v).
const ValueT u = a.value();
const ValueT v = b.value();
// value
a.data_[0] *= v ;
// derivatives
a.data_[1] = a.data_[1]*v + b.data_[1] * u;
a.data_[2] = a.data_[2]*v + b.data_[2] * u;
a.data_[3] = a.data_[3]*v + b.data_[3] * u;
a.data_[4] = a.data_[4]*v + b.data_[4] * u;
a.data_[5] = a.data_[5]*v + b.data_[5] * u;
return a;
}
template <class RhsType>
static inline Eval& scalarMulEq(Eval& a, const RhsType& other)
{
a.data_[0] *= other;
a.data_[1] *= other;
a.data_[2] *= other;
a.data_[3] *= other;
a.data_[4] *= other;
a.data_[5] *= other;
return a;
}
static inline Eval& divEq(Eval& a, const Eval& b)
{
// values are divided, derivatives follow the rule for division, i.e., (u/v)' = (v'u - u'v)/v^2.
const ValueT v_vv = 1.0 / b.value();
const ValueT u_vv = a.value() * v_vv * v_vv;
// value
a.data_[0] *= v_vv;
// derivatives
a.data_[1] = a.data_[1]*v_vv - b.data_[1]*u_vv;
a.data_[2] = a.data_[2]*v_vv - b.data_[2]*u_vv;
a.data_[3] = a.data_[3]*v_vv - b.data_[3]*u_vv;
a.data_[4] = a.data_[4]*v_vv - b.data_[4]*u_vv;
a.data_[5] = a.data_[5]*v_vv - b.data_[5]*u_vv;
return a;
}
template <class RhsType>
static inline Eval& scalarDivEq(Eval& a, const RhsType& other)
{
a.data_[0] /= other;
a.data_[1] /= other;
a.data_[2] /= other;
a.data_[3] /= other;
a.data_[4] /= other;
a.data_[5] /= other;
return a;
}
template <class RhsValueType>
static inline Eval devide(const RhsValueType& a, const Eval& b)
{
Eval result;
result.setValue( a/b.value() );
const ValueT df_dg = - result.value()/b.value();
result.data_[1] = df_dg*b.data_[1];
result.data_[2] = df_dg*b.data_[2];
result.data_[3] = df_dg*b.data_[3];
result.data_[4] = df_dg*b.data_[4];
result.data_[5] = df_dg*b.data_[5];
return result;
}
};
} } // namespace DenseAd, Opm
#endif // OPM_DENSEAD_EVALUATION5_HPP

View File

@ -23,436 +23,176 @@
/*!
* \file
*
* \brief Representation of an evaluation of a function and its derivatives w.r.t. a set
* of variables in the localized OPM automatic differentiation (AD) framework.
* \brief This file specializes the dense-AD Evaluation class for 6 derivatives.
*
* \attention THIS FILE GETS AUTOMATICALLY GENERATED BY THE "genEvalSpecializations.py"
* SCRIPT. DO NOT EDIT IT MANUALLY!
*/
#ifndef OPM_LOCAL_AD_EVALUATION_6_HPP
#define OPM_LOCAL_AD_EVALUATION_6_HPP
#include "Math.hpp"
#include <opm/common/Valgrind.hpp>
#include <dune/common/version.hh>
#include <array>
#include <cmath>
#include <cassert>
#include <iostream>
#include <algorithm>
#ifndef OPM_DENSEAD_EVALUATION6_HPP
#define OPM_DENSEAD_EVALUATION6_HPP
namespace Opm {
namespace DenseAd {
/*!
* \brief Represents a function evaluation and its derivatives w.r.t. a fixed set of
* variables.
*/
template <class ValueT>
class Evaluation< ValueT, 6 >
struct EvaluationOps<ValueT, 6>
{
static constexpr int numVars = 6;
private:
typedef Evaluation<ValueT, 6 > Eval;
public:
//! field type
typedef ValueT ValueType;
//! number of derivatives
static constexpr int size = numVars;
protected:
//! length of internal data vector
static constexpr int length_ = numVars + 1 ;
//! position index for value
static constexpr int valuepos_ = 0;
//! start index for derivatives
static constexpr int dstart_ = 1;
//! end+1 index for derivatives
static constexpr int dend_ = length_ ;
public:
//! default constructor
Evaluation() : data_()
{}
//! copy other function evaluation
Evaluation(const Evaluation& other) : data_( other.data_ )
static inline void assign(Eval& a, const Eval& b)
{
a.data_[0] = b.data_[0];
a.data_[1] = b.data_[1];
a.data_[2] = b.data_[2];
a.data_[3] = b.data_[3];
a.data_[4] = b.data_[4];
a.data_[5] = b.data_[5];
a.data_[6] = b.data_[6];
}
// create an evaluation which represents a constant function
//
// i.e., f(x) = c. this implies an evaluation with the given value and all
// derivatives being zero.
template <class RhsValueType>
Evaluation(const RhsValueType& c)
static inline void assignNegative(Eval& a, const Eval& b)
{
setValue( c );
clearDerivatives();
Valgrind::CheckDefined( data_ );
a.data_[0] = - b.data_[0];
a.data_[1] = - b.data_[1];
a.data_[2] = - b.data_[2];
a.data_[3] = - b.data_[3];
a.data_[4] = - b.data_[4];
a.data_[5] = - b.data_[5];
a.data_[6] = - b.data_[6];
}
// create an evaluation which represents a constant function
//
// i.e., f(x) = c. this implies an evaluation with the given value and all
// derivatives being zero.
template <class RhsValueType>
Evaluation(const RhsValueType& c, int varPos)
static inline void clearDerivatives(Eval& a)
{
setValue( c );
clearDerivatives();
// The variable position must be in represented by the given variable descriptor
assert(0 <= varPos && varPos < numVars);
data_[varPos + dstart_] = 1.0;
Valgrind::CheckDefined(data_);
}
// create a function evaluation for a "naked" depending variable (i.e., f(x) = x)
template <class RhsValueType>
static Evaluation devide(const RhsValueType& a, const Evaluation& b )
{
Evaluation<ValueType, numVars> result;
result.setValue( a/b.value() );
const ValueType df_dg = - result.value()/b.value();
for (int idx = dstart_; idx < dend_; ++idx) {
result.data_[idx] = df_dg*b.data_[idx];
}
return result;
a.data_[1] = 0.0;
a.data_[2] = 0.0;
a.data_[3] = 0.0;
a.data_[4] = 0.0;
a.data_[5] = 0.0;
a.data_[6] = 0.0;
}
// set all derivatives to zero
void clearDerivatives()
static inline Eval& addEq(Eval& a, const Eval& b)
{
data_[ 1 ] = 0;
data_[ 2 ] = 0;
data_[ 3 ] = 0;
data_[ 4 ] = 0;
data_[ 5 ] = 0;
data_[ 6 ] = 0;
a.data_[0] += b.data_[0];
a.data_[1] += b.data_[1];
a.data_[2] += b.data_[2];
a.data_[3] += b.data_[3];
a.data_[4] += b.data_[4];
a.data_[5] += b.data_[5];
a.data_[6] += b.data_[6];
return a;
}
// create a function evaluation for a "naked" depending variable (i.e., f(x) = x)
template <class RhsValueType>
static Evaluation createVariable(const RhsValueType& value, int varPos)
static inline Eval& subEq(Eval& a, const Eval& b)
{
// copy function value and set all derivatives to 0, except for the variable
// which is represented by the value (which is set to 1.0)
return Evaluation( value, varPos );
a.data_[0] -= b.data_[0];
a.data_[1] -= b.data_[1];
a.data_[2] -= b.data_[2];
a.data_[3] -= b.data_[3];
a.data_[4] -= b.data_[4];
a.data_[5] -= b.data_[5];
a.data_[6] -= b.data_[6];
return a;
}
// "evaluate" a constant function (i.e. a function that does not depend on the set of
// relevant variables, f(x) = c).
template <class RhsValueType>
static Evaluation createConstant(const RhsValueType& value)
{
return Evaluation( value );
}
// print the value and the derivatives of the function evaluation
void print(std::ostream& os = std::cout) const
{
// print value
os << "v: " << value() << " / d:";
// print derivatives
for (int varIdx = 0; varIdx < numVars; ++varIdx)
os << " " << derivative(varIdx);
}
// copy all derivatives from other
void copyDerivatives(const Evaluation& other)
{
data_[ 1 ] = other.data_[ 1 ];
data_[ 2 ] = other.data_[ 2 ];
data_[ 3 ] = other.data_[ 3 ];
data_[ 4 ] = other.data_[ 4 ];
data_[ 5 ] = other.data_[ 5 ];
data_[ 6 ] = other.data_[ 6 ];
}
// add value and derivatives from other to this values and derivatives
Evaluation& operator+=(const Evaluation& other)
{
data_[ 0 ] += other.data_[ 0 ];
data_[ 1 ] += other.data_[ 1 ];
data_[ 2 ] += other.data_[ 2 ];
data_[ 3 ] += other.data_[ 3 ];
data_[ 4 ] += other.data_[ 4 ];
data_[ 5 ] += other.data_[ 5 ];
data_[ 6 ] += other.data_[ 6 ];
return *this;
}
// add value from other to this values
template <class RhsValueType>
Evaluation& operator+=(const RhsValueType& other)
{
// value is added, derivatives stay the same
data_[valuepos_] += other;
return *this;
}
// subtract other's value and derivatives from this values
Evaluation& operator-=(const Evaluation& other)
{
// value and derivatives are subtracted
data_[ 0 ] -= other.data_[ 0 ];
data_[ 1 ] -= other.data_[ 1 ];
data_[ 2 ] -= other.data_[ 2 ];
data_[ 3 ] -= other.data_[ 3 ];
data_[ 4 ] -= other.data_[ 4 ];
data_[ 5 ] -= other.data_[ 5 ];
data_[ 6 ] -= other.data_[ 6 ];
return *this;
}
// subtract other's value from this values
template <class RhsValueType>
Evaluation& operator-=(const RhsValueType& other)
{
// for constants, values are subtracted, derivatives stay the same
data_[ valuepos_ ] -= other;
return *this;
}
// multiply values and apply chain rule to derivatives: (u*v)' = (v'u + u'v)
Evaluation& operator*=(const Evaluation& other)
static inline Eval& mulEq(Eval& a, const Eval& b)
{
// while the values are multiplied, the derivatives follow the product rule,
// i.e., (u*v)' = (v'u + u'v).
const ValueType u = value();
const ValueType v = other.value();
const ValueT u = a.value();
const ValueT v = b.value();
data_[ 0 ] = u * v ;
data_[ 1 ] = data_[ 1 ] * v + other.data_[ 1 ] * u;
data_[ 2 ] = data_[ 2 ] * v + other.data_[ 2 ] * u;
data_[ 3 ] = data_[ 3 ] * v + other.data_[ 3 ] * u;
data_[ 4 ] = data_[ 4 ] * v + other.data_[ 4 ] * u;
data_[ 5 ] = data_[ 5 ] * v + other.data_[ 5 ] * u;
data_[ 6 ] = data_[ 6 ] * v + other.data_[ 6 ] * u;
// value
a.data_[0] *= v ;
return *this;
// derivatives
a.data_[1] = a.data_[1]*v + b.data_[1] * u;
a.data_[2] = a.data_[2]*v + b.data_[2] * u;
a.data_[3] = a.data_[3]*v + b.data_[3] * u;
a.data_[4] = a.data_[4]*v + b.data_[4] * u;
a.data_[5] = a.data_[5]*v + b.data_[5] * u;
a.data_[6] = a.data_[6]*v + b.data_[6] * u;
return a;
}
template <class RhsType>
static inline Eval& scalarMulEq(Eval& a, const RhsType& other)
{
a.data_[0] *= other;
a.data_[1] *= other;
a.data_[2] *= other;
a.data_[3] *= other;
a.data_[4] *= other;
a.data_[5] *= other;
a.data_[6] *= other;
return a;
}
static inline Eval& divEq(Eval& a, const Eval& b)
{
// values are divided, derivatives follow the rule for division, i.e., (u/v)' = (v'u - u'v)/v^2.
const ValueT v_vv = 1.0 / b.value();
const ValueT u_vv = a.value() * v_vv * v_vv;
// value
a.data_[0] *= v_vv;
// derivatives
a.data_[1] = a.data_[1]*v_vv - b.data_[1]*u_vv;
a.data_[2] = a.data_[2]*v_vv - b.data_[2]*u_vv;
a.data_[3] = a.data_[3]*v_vv - b.data_[3]*u_vv;
a.data_[4] = a.data_[4]*v_vv - b.data_[4]*u_vv;
a.data_[5] = a.data_[5]*v_vv - b.data_[5]*u_vv;
a.data_[6] = a.data_[6]*v_vv - b.data_[6]*u_vv;
return a;
}
template <class RhsType>
static inline Eval& scalarDivEq(Eval& a, const RhsType& other)
{
a.data_[0] /= other;
a.data_[1] /= other;
a.data_[2] /= other;
a.data_[3] /= other;
a.data_[4] /= other;
a.data_[5] /= other;
a.data_[6] /= other;
return a;
}
// m(u*v)' = (v'u + u'v)
template <class RhsValueType>
Evaluation& operator*=(RhsValueType other)
static inline Eval devide(const RhsValueType& a, const Eval& b)
{
data_[ 0 ] *= other;
data_[ 1 ] *= other;
data_[ 2 ] *= other;
data_[ 3 ] *= other;
data_[ 4 ] *= other;
data_[ 5 ] *= other;
data_[ 6 ] *= other;
Eval result;
result.setValue( a/b.value() );
const ValueT df_dg = - result.value()/b.value();
return *this;
}
// m(u*v)' = (v'u + u'v)
Evaluation& operator/=(const Evaluation& other)
{
// values are divided, derivatives follow the rule for division, i.e., (u/v)' = (v'u -
// u'v)/v^2.
const ValueType v_vv = 1.0 / other.value();
const ValueType u_vv = value() * v_vv * v_vv;
data_[ 0 ] *= v_vv;
data_[ 1 ] = data_[ 1 ] * v_vv - other.data_[ 1 ] * u_vv ;
data_[ 2 ] = data_[ 2 ] * v_vv - other.data_[ 2 ] * u_vv ;
data_[ 3 ] = data_[ 3 ] * v_vv - other.data_[ 3 ] * u_vv ;
data_[ 4 ] = data_[ 4 ] * v_vv - other.data_[ 4 ] * u_vv ;
data_[ 5 ] = data_[ 5 ] * v_vv - other.data_[ 5 ] * u_vv ;
data_[ 6 ] = data_[ 6 ] * v_vv - other.data_[ 6 ] * u_vv ;
return *this;
}
// multiply value and derivatives by value of other
template <class RhsValueType>
Evaluation& operator/=(const RhsValueType& other)
{
// values and derivatives are divided
ValueType factor = (1.0/other);
data_[ 0 ] *= factor;
data_[ 1 ] *= factor;
data_[ 2 ] *= factor;
data_[ 3 ] *= factor;
data_[ 4 ] *= factor;
data_[ 5 ] *= factor;
data_[ 6 ] *= factor;
return *this;
}
// add two evaluation objects
Evaluation operator+(const Evaluation& other) const
{
Evaluation result(*this);
result += other;
return result;
}
// add constant to this object
template <class RhsValueType>
Evaluation operator+(const RhsValueType& other) const
{
Evaluation result(*this);
result += other;
return result;
}
// subtract two evaluation objects
Evaluation operator-(const Evaluation& other) const
{
Evaluation result(*this);
result -= other;
return result;
}
// subtract constant from evaluation object
template <class RhsValueType>
Evaluation operator-(const RhsValueType& other) const
{
Evaluation result(*this);
result -= other;
return result;
}
// negation (unary minus) operator
Evaluation operator-() const
{
Evaluation result;
// set value and derivatives to negative
for (int idx = 0; idx < length_; ++idx)
result.data_[idx] = - data_[idx];
result.data_[1] = df_dg*b.data_[1];
result.data_[2] = df_dg*b.data_[2];
result.data_[3] = df_dg*b.data_[3];
result.data_[4] = df_dg*b.data_[4];
result.data_[5] = df_dg*b.data_[5];
result.data_[6] = df_dg*b.data_[6];
return result;
}
Evaluation operator*(const Evaluation& other) const
{
Evaluation result(*this);
result *= other;
return result;
}
template <class RhsValueType>
Evaluation operator*(const RhsValueType& other) const
{
Evaluation result(*this);
result *= other;
return result;
}
Evaluation operator/(const Evaluation& other) const
{
Evaluation result(*this);
result /= other;
return result;
}
template <class RhsValueType>
Evaluation operator/(const RhsValueType& other) const
{
Evaluation result(*this);
result /= other;
return result;
}
template <class RhsValueType>
Evaluation& operator=(const RhsValueType& other)
{
setValue( other );
clearDerivatives();
return *this;
}
// copy assignment from evaluation
Evaluation& operator=(const Evaluation& other)
{
data_ = other.data_;
return *this;
}
template <class RhsValueType>
bool operator==(const RhsValueType& other) const
{ return value() == other; }
bool operator==(const Evaluation& other) const
{
for (int idx = 0; idx < length_; ++idx)
if (data_[idx] != other.data_[idx])
return false;
return true;
}
bool operator!=(const Evaluation& other) const
{ return !operator==(other); }
template <class RhsValueType>
bool operator>(RhsValueType other) const
{ return value() > other; }
bool operator>(const Evaluation& other) const
{ return value() > other.value(); }
template <class RhsValueType>
bool operator<(RhsValueType other) const
{ return value() < other; }
bool operator<(const Evaluation& other) const
{ return value() < other.value(); }
template <class RhsValueType>
bool operator>=(RhsValueType other) const
{ return value() >= other; }
bool operator>=(const Evaluation& other) const
{ return value() >= other.value(); }
template <class RhsValueType>
bool operator<=(RhsValueType other) const
{ return value() <= other; }
bool operator<=(const Evaluation& other) const
{ return value() <= other.value(); }
// return value of variable
const ValueType& value() const
{ return data_[valuepos_]; }
// set value of variable
void setValue(const ValueType& val)
{ data_[valuepos_] = val; }
// return varIdx'th derivative
const ValueType& derivative(int varIdx) const
{
assert(varIdx < numVars);
return data_[varIdx + dstart_];
}
// set derivative at position varIdx
void setDerivative(int varIdx, const ValueType& derVal)
{
assert(varIdx < numVars);
data_[varIdx + dstart_] = derVal;
}
protected:
std::array<ValueType, length_> data_;
};
} // namespace DenseAD
} // namespace Dune
} } // namespace DenseAd, Opm
// #include <opm/material/densead/EvaluationSIMD.hpp>
#endif
#endif // OPM_DENSEAD_EVALUATION6_HPP

View File

@ -0,0 +1,208 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \brief This file specializes the dense-AD Evaluation class for 7 derivatives.
*
* \attention THIS FILE GETS AUTOMATICALLY GENERATED BY THE "genEvalSpecializations.py"
* SCRIPT. DO NOT EDIT IT MANUALLY!
*/
#ifndef OPM_DENSEAD_EVALUATION7_HPP
#define OPM_DENSEAD_EVALUATION7_HPP
namespace Opm {
namespace DenseAd {
template <class ValueT>
struct EvaluationOps<ValueT, 7>
{
private:
typedef Evaluation<ValueT, 7 > Eval;
public:
static inline void assign(Eval& a, const Eval& b)
{
a.data_[0] = b.data_[0];
a.data_[1] = b.data_[1];
a.data_[2] = b.data_[2];
a.data_[3] = b.data_[3];
a.data_[4] = b.data_[4];
a.data_[5] = b.data_[5];
a.data_[6] = b.data_[6];
a.data_[7] = b.data_[7];
}
static inline void assignNegative(Eval& a, const Eval& b)
{
a.data_[0] = - b.data_[0];
a.data_[1] = - b.data_[1];
a.data_[2] = - b.data_[2];
a.data_[3] = - b.data_[3];
a.data_[4] = - b.data_[4];
a.data_[5] = - b.data_[5];
a.data_[6] = - b.data_[6];
a.data_[7] = - b.data_[7];
}
static inline void clearDerivatives(Eval& a)
{
a.data_[1] = 0.0;
a.data_[2] = 0.0;
a.data_[3] = 0.0;
a.data_[4] = 0.0;
a.data_[5] = 0.0;
a.data_[6] = 0.0;
a.data_[7] = 0.0;
}
static inline Eval& addEq(Eval& a, const Eval& b)
{
a.data_[0] += b.data_[0];
a.data_[1] += b.data_[1];
a.data_[2] += b.data_[2];
a.data_[3] += b.data_[3];
a.data_[4] += b.data_[4];
a.data_[5] += b.data_[5];
a.data_[6] += b.data_[6];
a.data_[7] += b.data_[7];
return a;
}
static inline Eval& subEq(Eval& a, const Eval& b)
{
a.data_[0] -= b.data_[0];
a.data_[1] -= b.data_[1];
a.data_[2] -= b.data_[2];
a.data_[3] -= b.data_[3];
a.data_[4] -= b.data_[4];
a.data_[5] -= b.data_[5];
a.data_[6] -= b.data_[6];
a.data_[7] -= b.data_[7];
return a;
}
static inline Eval& mulEq(Eval& a, const Eval& b)
{
// while the values are multiplied, the derivatives follow the product rule,
// i.e., (u*v)' = (v'u + u'v).
const ValueT u = a.value();
const ValueT v = b.value();
// value
a.data_[0] *= v ;
// derivatives
a.data_[1] = a.data_[1]*v + b.data_[1] * u;
a.data_[2] = a.data_[2]*v + b.data_[2] * u;
a.data_[3] = a.data_[3]*v + b.data_[3] * u;
a.data_[4] = a.data_[4]*v + b.data_[4] * u;
a.data_[5] = a.data_[5]*v + b.data_[5] * u;
a.data_[6] = a.data_[6]*v + b.data_[6] * u;
a.data_[7] = a.data_[7]*v + b.data_[7] * u;
return a;
}
template <class RhsType>
static inline Eval& scalarMulEq(Eval& a, const RhsType& other)
{
a.data_[0] *= other;
a.data_[1] *= other;
a.data_[2] *= other;
a.data_[3] *= other;
a.data_[4] *= other;
a.data_[5] *= other;
a.data_[6] *= other;
a.data_[7] *= other;
return a;
}
static inline Eval& divEq(Eval& a, const Eval& b)
{
// values are divided, derivatives follow the rule for division, i.e., (u/v)' = (v'u - u'v)/v^2.
const ValueT v_vv = 1.0 / b.value();
const ValueT u_vv = a.value() * v_vv * v_vv;
// value
a.data_[0] *= v_vv;
// derivatives
a.data_[1] = a.data_[1]*v_vv - b.data_[1]*u_vv;
a.data_[2] = a.data_[2]*v_vv - b.data_[2]*u_vv;
a.data_[3] = a.data_[3]*v_vv - b.data_[3]*u_vv;
a.data_[4] = a.data_[4]*v_vv - b.data_[4]*u_vv;
a.data_[5] = a.data_[5]*v_vv - b.data_[5]*u_vv;
a.data_[6] = a.data_[6]*v_vv - b.data_[6]*u_vv;
a.data_[7] = a.data_[7]*v_vv - b.data_[7]*u_vv;
return a;
}
template <class RhsType>
static inline Eval& scalarDivEq(Eval& a, const RhsType& other)
{
a.data_[0] /= other;
a.data_[1] /= other;
a.data_[2] /= other;
a.data_[3] /= other;
a.data_[4] /= other;
a.data_[5] /= other;
a.data_[6] /= other;
a.data_[7] /= other;
return a;
}
template <class RhsValueType>
static inline Eval devide(const RhsValueType& a, const Eval& b)
{
Eval result;
result.setValue( a/b.value() );
const ValueT df_dg = - result.value()/b.value();
result.data_[1] = df_dg*b.data_[1];
result.data_[2] = df_dg*b.data_[2];
result.data_[3] = df_dg*b.data_[3];
result.data_[4] = df_dg*b.data_[4];
result.data_[5] = df_dg*b.data_[5];
result.data_[6] = df_dg*b.data_[6];
result.data_[7] = df_dg*b.data_[7];
return result;
}
};
} } // namespace DenseAd, Opm
#endif // OPM_DENSEAD_EVALUATION7_HPP

View File

@ -0,0 +1,218 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \brief This file specializes the dense-AD Evaluation class for 8 derivatives.
*
* \attention THIS FILE GETS AUTOMATICALLY GENERATED BY THE "genEvalSpecializations.py"
* SCRIPT. DO NOT EDIT IT MANUALLY!
*/
#ifndef OPM_DENSEAD_EVALUATION8_HPP
#define OPM_DENSEAD_EVALUATION8_HPP
namespace Opm {
namespace DenseAd {
template <class ValueT>
struct EvaluationOps<ValueT, 8>
{
private:
typedef Evaluation<ValueT, 8 > Eval;
public:
static inline void assign(Eval& a, const Eval& b)
{
a.data_[0] = b.data_[0];
a.data_[1] = b.data_[1];
a.data_[2] = b.data_[2];
a.data_[3] = b.data_[3];
a.data_[4] = b.data_[4];
a.data_[5] = b.data_[5];
a.data_[6] = b.data_[6];
a.data_[7] = b.data_[7];
a.data_[8] = b.data_[8];
}
static inline void assignNegative(Eval& a, const Eval& b)
{
a.data_[0] = - b.data_[0];
a.data_[1] = - b.data_[1];
a.data_[2] = - b.data_[2];
a.data_[3] = - b.data_[3];
a.data_[4] = - b.data_[4];
a.data_[5] = - b.data_[5];
a.data_[6] = - b.data_[6];
a.data_[7] = - b.data_[7];
a.data_[8] = - b.data_[8];
}
static inline void clearDerivatives(Eval& a)
{
a.data_[1] = 0.0;
a.data_[2] = 0.0;
a.data_[3] = 0.0;
a.data_[4] = 0.0;
a.data_[5] = 0.0;
a.data_[6] = 0.0;
a.data_[7] = 0.0;
a.data_[8] = 0.0;
}
static inline Eval& addEq(Eval& a, const Eval& b)
{
a.data_[0] += b.data_[0];
a.data_[1] += b.data_[1];
a.data_[2] += b.data_[2];
a.data_[3] += b.data_[3];
a.data_[4] += b.data_[4];
a.data_[5] += b.data_[5];
a.data_[6] += b.data_[6];
a.data_[7] += b.data_[7];
a.data_[8] += b.data_[8];
return a;
}
static inline Eval& subEq(Eval& a, const Eval& b)
{
a.data_[0] -= b.data_[0];
a.data_[1] -= b.data_[1];
a.data_[2] -= b.data_[2];
a.data_[3] -= b.data_[3];
a.data_[4] -= b.data_[4];
a.data_[5] -= b.data_[5];
a.data_[6] -= b.data_[6];
a.data_[7] -= b.data_[7];
a.data_[8] -= b.data_[8];
return a;
}
static inline Eval& mulEq(Eval& a, const Eval& b)
{
// while the values are multiplied, the derivatives follow the product rule,
// i.e., (u*v)' = (v'u + u'v).
const ValueT u = a.value();
const ValueT v = b.value();
// value
a.data_[0] *= v ;
// derivatives
a.data_[1] = a.data_[1]*v + b.data_[1] * u;
a.data_[2] = a.data_[2]*v + b.data_[2] * u;
a.data_[3] = a.data_[3]*v + b.data_[3] * u;
a.data_[4] = a.data_[4]*v + b.data_[4] * u;
a.data_[5] = a.data_[5]*v + b.data_[5] * u;
a.data_[6] = a.data_[6]*v + b.data_[6] * u;
a.data_[7] = a.data_[7]*v + b.data_[7] * u;
a.data_[8] = a.data_[8]*v + b.data_[8] * u;
return a;
}
template <class RhsType>
static inline Eval& scalarMulEq(Eval& a, const RhsType& other)
{
a.data_[0] *= other;
a.data_[1] *= other;
a.data_[2] *= other;
a.data_[3] *= other;
a.data_[4] *= other;
a.data_[5] *= other;
a.data_[6] *= other;
a.data_[7] *= other;
a.data_[8] *= other;
return a;
}
static inline Eval& divEq(Eval& a, const Eval& b)
{
// values are divided, derivatives follow the rule for division, i.e., (u/v)' = (v'u - u'v)/v^2.
const ValueT v_vv = 1.0 / b.value();
const ValueT u_vv = a.value() * v_vv * v_vv;
// value
a.data_[0] *= v_vv;
// derivatives
a.data_[1] = a.data_[1]*v_vv - b.data_[1]*u_vv;
a.data_[2] = a.data_[2]*v_vv - b.data_[2]*u_vv;
a.data_[3] = a.data_[3]*v_vv - b.data_[3]*u_vv;
a.data_[4] = a.data_[4]*v_vv - b.data_[4]*u_vv;
a.data_[5] = a.data_[5]*v_vv - b.data_[5]*u_vv;
a.data_[6] = a.data_[6]*v_vv - b.data_[6]*u_vv;
a.data_[7] = a.data_[7]*v_vv - b.data_[7]*u_vv;
a.data_[8] = a.data_[8]*v_vv - b.data_[8]*u_vv;
return a;
}
template <class RhsType>
static inline Eval& scalarDivEq(Eval& a, const RhsType& other)
{
a.data_[0] /= other;
a.data_[1] /= other;
a.data_[2] /= other;
a.data_[3] /= other;
a.data_[4] /= other;
a.data_[5] /= other;
a.data_[6] /= other;
a.data_[7] /= other;
a.data_[8] /= other;
return a;
}
template <class RhsValueType>
static inline Eval devide(const RhsValueType& a, const Eval& b)
{
Eval result;
result.setValue( a/b.value() );
const ValueT df_dg = - result.value()/b.value();
result.data_[1] = df_dg*b.data_[1];
result.data_[2] = df_dg*b.data_[2];
result.data_[3] = df_dg*b.data_[3];
result.data_[4] = df_dg*b.data_[4];
result.data_[5] = df_dg*b.data_[5];
result.data_[6] = df_dg*b.data_[6];
result.data_[7] = df_dg*b.data_[7];
result.data_[8] = df_dg*b.data_[8];
return result;
}
};
} } // namespace DenseAd, Opm
#endif // OPM_DENSEAD_EVALUATION8_HPP

View File

@ -0,0 +1,228 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \brief This file specializes the dense-AD Evaluation class for 9 derivatives.
*
* \attention THIS FILE GETS AUTOMATICALLY GENERATED BY THE "genEvalSpecializations.py"
* SCRIPT. DO NOT EDIT IT MANUALLY!
*/
#ifndef OPM_DENSEAD_EVALUATION9_HPP
#define OPM_DENSEAD_EVALUATION9_HPP
namespace Opm {
namespace DenseAd {
template <class ValueT>
struct EvaluationOps<ValueT, 9>
{
private:
typedef Evaluation<ValueT, 9 > Eval;
public:
static inline void assign(Eval& a, const Eval& b)
{
a.data_[0] = b.data_[0];
a.data_[1] = b.data_[1];
a.data_[2] = b.data_[2];
a.data_[3] = b.data_[3];
a.data_[4] = b.data_[4];
a.data_[5] = b.data_[5];
a.data_[6] = b.data_[6];
a.data_[7] = b.data_[7];
a.data_[8] = b.data_[8];
a.data_[9] = b.data_[9];
}
static inline void assignNegative(Eval& a, const Eval& b)
{
a.data_[0] = - b.data_[0];
a.data_[1] = - b.data_[1];
a.data_[2] = - b.data_[2];
a.data_[3] = - b.data_[3];
a.data_[4] = - b.data_[4];
a.data_[5] = - b.data_[5];
a.data_[6] = - b.data_[6];
a.data_[7] = - b.data_[7];
a.data_[8] = - b.data_[8];
a.data_[9] = - b.data_[9];
}
static inline void clearDerivatives(Eval& a)
{
a.data_[1] = 0.0;
a.data_[2] = 0.0;
a.data_[3] = 0.0;
a.data_[4] = 0.0;
a.data_[5] = 0.0;
a.data_[6] = 0.0;
a.data_[7] = 0.0;
a.data_[8] = 0.0;
a.data_[9] = 0.0;
}
static inline Eval& addEq(Eval& a, const Eval& b)
{
a.data_[0] += b.data_[0];
a.data_[1] += b.data_[1];
a.data_[2] += b.data_[2];
a.data_[3] += b.data_[3];
a.data_[4] += b.data_[4];
a.data_[5] += b.data_[5];
a.data_[6] += b.data_[6];
a.data_[7] += b.data_[7];
a.data_[8] += b.data_[8];
a.data_[9] += b.data_[9];
return a;
}
static inline Eval& subEq(Eval& a, const Eval& b)
{
a.data_[0] -= b.data_[0];
a.data_[1] -= b.data_[1];
a.data_[2] -= b.data_[2];
a.data_[3] -= b.data_[3];
a.data_[4] -= b.data_[4];
a.data_[5] -= b.data_[5];
a.data_[6] -= b.data_[6];
a.data_[7] -= b.data_[7];
a.data_[8] -= b.data_[8];
a.data_[9] -= b.data_[9];
return a;
}
static inline Eval& mulEq(Eval& a, const Eval& b)
{
// while the values are multiplied, the derivatives follow the product rule,
// i.e., (u*v)' = (v'u + u'v).
const ValueT u = a.value();
const ValueT v = b.value();
// value
a.data_[0] *= v ;
// derivatives
a.data_[1] = a.data_[1]*v + b.data_[1] * u;
a.data_[2] = a.data_[2]*v + b.data_[2] * u;
a.data_[3] = a.data_[3]*v + b.data_[3] * u;
a.data_[4] = a.data_[4]*v + b.data_[4] * u;
a.data_[5] = a.data_[5]*v + b.data_[5] * u;
a.data_[6] = a.data_[6]*v + b.data_[6] * u;
a.data_[7] = a.data_[7]*v + b.data_[7] * u;
a.data_[8] = a.data_[8]*v + b.data_[8] * u;
a.data_[9] = a.data_[9]*v + b.data_[9] * u;
return a;
}
template <class RhsType>
static inline Eval& scalarMulEq(Eval& a, const RhsType& other)
{
a.data_[0] *= other;
a.data_[1] *= other;
a.data_[2] *= other;
a.data_[3] *= other;
a.data_[4] *= other;
a.data_[5] *= other;
a.data_[6] *= other;
a.data_[7] *= other;
a.data_[8] *= other;
a.data_[9] *= other;
return a;
}
static inline Eval& divEq(Eval& a, const Eval& b)
{
// values are divided, derivatives follow the rule for division, i.e., (u/v)' = (v'u - u'v)/v^2.
const ValueT v_vv = 1.0 / b.value();
const ValueT u_vv = a.value() * v_vv * v_vv;
// value
a.data_[0] *= v_vv;
// derivatives
a.data_[1] = a.data_[1]*v_vv - b.data_[1]*u_vv;
a.data_[2] = a.data_[2]*v_vv - b.data_[2]*u_vv;
a.data_[3] = a.data_[3]*v_vv - b.data_[3]*u_vv;
a.data_[4] = a.data_[4]*v_vv - b.data_[4]*u_vv;
a.data_[5] = a.data_[5]*v_vv - b.data_[5]*u_vv;
a.data_[6] = a.data_[6]*v_vv - b.data_[6]*u_vv;
a.data_[7] = a.data_[7]*v_vv - b.data_[7]*u_vv;
a.data_[8] = a.data_[8]*v_vv - b.data_[8]*u_vv;
a.data_[9] = a.data_[9]*v_vv - b.data_[9]*u_vv;
return a;
}
template <class RhsType>
static inline Eval& scalarDivEq(Eval& a, const RhsType& other)
{
a.data_[0] /= other;
a.data_[1] /= other;
a.data_[2] /= other;
a.data_[3] /= other;
a.data_[4] /= other;
a.data_[5] /= other;
a.data_[6] /= other;
a.data_[7] /= other;
a.data_[8] /= other;
a.data_[9] /= other;
return a;
}
template <class RhsValueType>
static inline Eval devide(const RhsValueType& a, const Eval& b)
{
Eval result;
result.setValue( a/b.value() );
const ValueT df_dg = - result.value()/b.value();
result.data_[1] = df_dg*b.data_[1];
result.data_[2] = df_dg*b.data_[2];
result.data_[3] = df_dg*b.data_[3];
result.data_[4] = df_dg*b.data_[4];
result.data_[5] = df_dg*b.data_[5];
result.data_[6] = df_dg*b.data_[6];
result.data_[7] = df_dg*b.data_[7];
result.data_[8] = df_dg*b.data_[8];
result.data_[9] = df_dg*b.data_[9];
return result;
}
};
} } // namespace DenseAd, Opm
#endif // OPM_DENSEAD_EVALUATION9_HPP

View File

@ -0,0 +1,47 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \brief This file includes all specializations for the dense-AD Evaluation class.
*
* \attention THIS FILE GETS AUTOMATICALLY GENERATED BY THE "genEvalSpecializations.py"
* SCRIPT. DO NOT EDIT IT MANUALLY!
*/
#ifndef OPM_DENSEAD_EVALUATION_SPECIALIZATIONS_HPP
#define OPM_DENSEAD_EVALUATION_SPECIALIZATIONS_HPP
#include <opm/material/densead/Evaluation1.hpp>
#include <opm/material/densead/Evaluation2.hpp>
#include <opm/material/densead/Evaluation3.hpp>
#include <opm/material/densead/Evaluation4.hpp>
#include <opm/material/densead/Evaluation5.hpp>
#include <opm/material/densead/Evaluation6.hpp>
#include <opm/material/densead/Evaluation7.hpp>
#include <opm/material/densead/Evaluation8.hpp>
#include <opm/material/densead/Evaluation9.hpp>
#include <opm/material/densead/Evaluation10.hpp>
#include <opm/material/densead/Evaluation11.hpp>
#include <opm/material/densead/Evaluation12.hpp>
#endif // OPM_DENSEAD_EVALUATION_SPECIALIZATIONS_HPP