Add Support for RPTONLY and RPTONLYO

This former restricts summary output events to coincide with the
report step while the latter (*O) turns off this restriction and
makes summary output for every timestep.
This commit is contained in:
Bård Skaflestad 2021-08-10 00:55:39 +02:00
parent 114eec30c5
commit d216de77ea
8 changed files with 600 additions and 3 deletions

View File

@ -475,6 +475,7 @@ if(ENABLE_ECL_OUTPUT)
tests/summary_deck_non_constant_porosity.DATA
tests/SUMMARY_EFF_FAC.DATA
tests/SPE1CASE1.DATA
tests/SPE1CASE1_RPTONLY.DATA
tests/SPE1CASE1_SUMTHIN.DATA
tests/SPE1CASE1.SMSPEC
tests/SPE1CASE1A.SMSPEC

View File

@ -603,6 +603,8 @@ namespace Opm
void handleMXUNSUPP (const HandlerContext&, const ParseContext&, ErrorGuard&);
void handleNODEPROP (const HandlerContext&, const ParseContext&, ErrorGuard&);
void handleNUPCOL (const HandlerContext&, const ParseContext&, ErrorGuard&);
void handleRPTONLY (const HandlerContext&, const ParseContext&, ErrorGuard&);
void handleRPTONLYO (const HandlerContext&, const ParseContext&, ErrorGuard&);
void handleRPTRST (const HandlerContext&, const ParseContext&, ErrorGuard&);
void handleRPTSCHED (const HandlerContext&, const ParseContext&, ErrorGuard&);
void handleTUNING (const HandlerContext&, const ParseContext&, ErrorGuard&);

View File

@ -325,6 +325,10 @@ namespace Opm {
const std::optional<double>& sumthin() const;
void update_sumthin(double sumthin);
bool rptonly() const;
void rptonly(const bool only);
/*********************************************************************/
ptr_member<GConSale> gconsale;
@ -461,6 +465,7 @@ namespace Opm {
serializer(m_first_in_month);
serializer(m_save_step);
serializer(m_sumthin);
serializer(this->m_rptonly);
m_tuning.serializeOp(serializer);
m_nupcol.serializeOp(serializer);
m_oilvap.serializeOp(serializer);
@ -493,6 +498,7 @@ namespace Opm {
MessageLimits m_message_limits;
Well::ProducerCMode m_whistctl_mode = Well::ProducerCMode::CMODE_UNDEFINED;
std::optional<double> m_sumthin;
bool m_rptonly{false};
};
}

View File

@ -130,7 +130,9 @@ private:
mutable bool sumthin_triggered_{false};
double last_sumthin_output_{std::numeric_limits<double>::lowest()};
bool checkAndRecordIfSumthinTriggered(const int report_step, const double secs_elapsed) const;
bool checkAndRecordIfSumthinTriggered(const int report_step,
const double secs_elapsed) const;
bool summaryAtRptOnly(const int report_step) const;
};
EclipseIO::Impl::Impl( const EclipseState& eclipseState,
@ -214,7 +216,9 @@ bool EclipseIO::Impl::wantSummaryOutput(const int report_step,
// generating summary output is the report step.
this->checkAndRecordIfSumthinTriggered(report_step, secs_elapsed);
return !isSubstep || !this->sumthin_active_ || this->sumthin_triggered_;
return !isSubstep
|| (!this->summaryAtRptOnly(report_step)
&& (!this->sumthin_active_ || this->sumthin_triggered_));
}
void EclipseIO::Impl::recordSummaryOutput(const double secs_elapsed)
@ -234,6 +238,11 @@ bool EclipseIO::Impl::checkAndRecordIfSumthinTriggered(const int report_step,
&& ! (secs_elapsed < this->last_sumthin_output_ + sumthin.value());
}
bool EclipseIO::Impl::summaryAtRptOnly(const int report_step) const
{
return this->schedule[report_step - 1].rptonly();
}
/*
int_data: Writes key(string) and integers vector to INIT file as eclipse keywords
- Key: Max 8 chars.

View File

@ -789,6 +789,14 @@ namespace {
this->snapshots.back().update_nupcol(nupcol);
}
void Schedule::handleRPTONLY(const HandlerContext&, const ParseContext&, ErrorGuard&) {
this->snapshots.back().rptonly(true);
}
void Schedule::handleRPTONLYO(const HandlerContext&, const ParseContext&, ErrorGuard&) {
this->snapshots.back().rptonly(false);
}
void Schedule::handleRPTSCHED(const HandlerContext& handlerContext, const ParseContext& parseContext, ErrorGuard& errors) {
this->snapshots.back().rpt_config.update( RPTConfig(handlerContext.keyword ));
auto rst_config = this->snapshots.back().rst_config();
@ -2024,6 +2032,8 @@ namespace {
{ "MULTZ-" , &Schedule::handleMXUNSUPP },
{ "NODEPROP", &Schedule::handleNODEPROP },
{ "NUPCOL" , &Schedule::handleNUPCOL },
{ "RPTONLY" , &Schedule::handleRPTONLY },
{ "RPTONLYO", &Schedule::handleRPTONLYO },
{ "RPTRST" , &Schedule::handleRPTRST },
{ "RPTSCHED", &Schedule::handleRPTSCHED },
{ "SAVE" , &Schedule::handleSAVE },

View File

@ -208,6 +208,15 @@ void ScheduleState::update_sumthin(double sumthin) {
this->m_sumthin = sumthin;
}
bool ScheduleState::rptonly() const
{
return this->m_rptonly;
}
void ScheduleState::rptonly(const bool only)
{
this->m_rptonly = only;
}
bool ScheduleState::operator==(const ScheduleState& other) const {
@ -243,7 +252,8 @@ bool ScheduleState::operator==(const ScheduleState& other) const {
this->groups == other.groups &&
this->vfpprod == other.vfpprod &&
this->vfpinj == other.vfpinj &&
this->m_sumthin == other.m_sumthin;
this->m_sumthin == other.m_sumthin &&
this->m_rptonly == other.m_rptonly;
}
@ -265,6 +275,9 @@ ScheduleState ScheduleState::serializeObject() {
ts.m_whistctl_mode = Well::ProducerCMode::THP;
ts.target_wellpi = {{"WELL1", 1000}, {"WELL2", 2000}};
ts.m_sumthin = 12.345;
ts.m_rptonly = true;
ts.pavg.update( PAvg::serializeObject() );
ts.wtest_config.update( WellTestConfig::serializeObject() );
ts.gconsump.update( GConSump::serializeObject() );

View File

@ -0,0 +1,482 @@
-- This reservoir simulation deck is made available under the Open Database
-- License: http://opendatacommons.org/licenses/odbl/1.0/. Any rights in
-- individual contents of the database are licensed under the Database Contents
-- License: http://opendatacommons.org/licenses/dbcl/1.0/
-- Copyright (C) 2015 Statoil
-- This simulation is based on the data given in
-- 'Comparison of Solutions to a Three-Dimensional
-- Black-Oil Reservoir Simulation Problem' by Aziz S. Odeh,
-- Journal of Petroleum Technology, January 1981
---------------------------------------------------------------------------
------------------------ SPE1 - CASE 1 ------------------------------------
---------------------------------------------------------------------------
RUNSPEC
-- -------------------------------------------------------------------------
TITLE
SPE1 - CASE 1
DIMENS
10 10 3 /
-- The number of equilibration regions is inferred from the EQLDIMS
-- keyword.
EQLDIMS
/
-- The number of PVTW tables is inferred from the TABDIMS keyword;
-- when no data is included in the keyword the default values are used.
TABDIMS
/
OIL
GAS
WATER
DISGAS
-- As seen from figure 4 in Odeh, GOR is increasing with time,
-- which means that dissolved gas is present
FIELD
START
1 'JAN' 2015 /
WELLDIMS
-- Item 1: maximum number of wells in the model
-- - there are two wells in the problem; injector and producer
-- Item 2: maximum number of grid blocks connected to any one well
-- - must be one as the wells are located at specific grid blocks
-- Item 3: maximum number of groups in the model
-- - we are dealing with only one 'group'
-- Item 4: maximum number of wells in any one group
-- - there must be two wells in a group as there are two wells in total
2 1 1 2 /
UNIFOUT
GRID
-- The INIT keyword is used to request an .INIT file. The .INIT file
-- is written before the simulation actually starts, and contains grid
-- properties and saturation tables as inferred from the input
-- deck. There are no other keywords which can be used to configure
-- exactly what is written to the .INIT file.
INIT
-- -------------------------------------------------------------------------
NOECHO
DX
-- There are in total 300 cells with length 1000ft in x-direction
300*1000 /
DY
-- There are in total 300 cells with length 1000ft in y-direction
300*1000 /
DZ
-- The layers are 20, 30 and 50 ft thick, in each layer there are 100 cells
100*20 100*30 100*50 /
TOPS
-- The depth of the top of each grid block
100*8325 /
PORO
-- Constant porosity of 0.3 throughout all 300 grid cells
300*0.3 /
PERMX
-- The layers have perm. 500mD, 50mD and 200mD, respectively.
100*500 100*50 100*200 /
PERMY
-- Equal to PERMX
100*500 100*50 100*200 /
PERMZ
-- Cannot find perm. in z-direction in Odeh's paper
-- For the time being, we will assume PERMZ equal to PERMX and PERMY:
100*500 100*50 100*200 /
ECHO
PROPS
-- -------------------------------------------------------------------------
PVTW
-- Item 1: pressure reference (psia)
-- Item 2: water FVF (rb per bbl or rb per stb)
-- Item 3: water compressibility (psi^{-1})
-- Item 4: water viscosity (cp)
-- Item 5: water 'viscosibility' (psi^{-1})
-- Using values from Norne:
-- In METRIC units:
-- 277.0 1.038 4.67E-5 0.318 0.0 /
-- In FIELD units:
4017.55 1.038 3.22E-6 0.318 0.0 /
ROCK
-- Item 1: reference pressure (psia)
-- Item 2: rock compressibility (psi^{-1})
-- Using values from table 1 in Odeh:
14.7 3E-6 /
SWOF
-- Column 1: water saturation
-- - this has been set to (almost) equally spaced values from 0.12 to 1
-- Column 2: water relative permeability
-- - generated from the Corey-type approx. formula
-- the coeffisient is set to 10e-5, S_{orw}=0 and S_{wi}=0.12
-- Column 3: oil relative permeability when only oil and water are present
-- - we will use the same values as in column 3 in SGOF.
-- This is not really correct, but since only the first
-- two values are of importance, this does not really matter
-- Column 4: water-oil capillary pressure (psi)
0.12 0 1 0
0.18 4.64876033057851E-008 1 0
0.24 0.000000186 0.997 0
0.3 4.18388429752066E-007 0.98 0
0.36 7.43801652892562E-007 0.7 0
0.42 1.16219008264463E-006 0.35 0
0.48 1.67355371900826E-006 0.2 0
0.54 2.27789256198347E-006 0.09 0
0.6 2.97520661157025E-006 0.021 0
0.66 3.7654958677686E-006 0.01 0
0.72 4.64876033057851E-006 0.001 0
0.78 0.000005625 0.0001 0
0.84 6.69421487603306E-006 0 0
0.91 8.05914256198347E-006 0 0
1 0.00001 0 0 /
SGOF
-- Column 1: gas saturation
-- Column 2: gas relative permeability
-- Column 3: oil relative permeability when oil, gas and connate water are present
-- Column 4: oil-gas capillary pressure (psi)
-- - stated to be zero in Odeh's paper
-- Values in column 1-3 are taken from table 3 in Odeh's paper:
0 0 1 0
0.001 0 1 0
0.02 0 0.997 0
0.05 0.005 0.980 0
0.12 0.025 0.700 0
0.2 0.075 0.350 0
0.25 0.125 0.200 0
0.3 0.190 0.090 0
0.4 0.410 0.021 0
0.45 0.60 0.010 0
0.5 0.72 0.001 0
0.6 0.87 0.0001 0
0.7 0.94 0.000 0
0.85 0.98 0.000 0
0.88 0.984 0.000 0 /
--1.00 1.0 0.000 0 /
-- Warning from Eclipse: first sat. value in SWOF + last sat. value in SGOF
-- must not be greater than 1, but Eclipse still runs
-- Flow needs the sum to be excactly 1 so I added a row with gas sat. = 0.88
-- The corresponding krg value was estimated by assuming linear rel. between
-- gas sat. and krw. between gas sat. 0.85 and 1.00 (the last two values given)
DENSITY
-- Density (lb per ft³) at surface cond. of
-- oil, water and gas, respectively (in that order)
-- Using values from Norne:
-- In METRIC units:
-- 859.5 1033.0 0.854 /
-- In FIELD units:
53.66 64.49 0.0533 /
PVDG
-- Column 1: gas phase pressure (psia)
-- Column 2: gas formation volume factor (rb per Mscf)
-- - in Odeh's paper the units are said to be given in rb per bbl,
-- but this is assumed to be a mistake: FVF-values in Odeh's paper
-- are given in rb per scf, not rb per bbl. This will be in
-- agreement with conventions
-- Column 3: gas viscosity (cP)
-- Using values from lower right table in Odeh's table 2:
14.700 166.666 0.008000
264.70 12.0930 0.009600
514.70 6.27400 0.011200
1014.7 3.19700 0.014000
2014.7 1.61400 0.018900
2514.7 1.29400 0.020800
3014.7 1.08000 0.022800
4014.7 0.81100 0.026800
5014.7 0.64900 0.030900
9014.7 0.38600 0.047000 /
PVTO
-- Column 1: dissolved gas-oil ratio (Mscf per stb)
-- Column 2: bubble point pressure (psia)
-- Column 3: oil FVF for saturated oil (rb per stb)
-- Column 4: oil viscosity for saturated oil (cP)
-- Use values from top left table in Odeh's table 2:
0.0010 14.7 1.0620 1.0400 /
0.0905 264.7 1.1500 0.9750 /
0.1800 514.7 1.2070 0.9100 /
0.3710 1014.7 1.2950 0.8300 /
0.6360 2014.7 1.4350 0.6950 /
0.7750 2514.7 1.5000 0.6410 /
0.9300 3014.7 1.5650 0.5940 /
1.2700 4014.7 1.6950 0.5100
9014.7 1.5790 0.7400 /
1.6180 5014.7 1.8270 0.4490
9014.7 1.7370 0.6310 /
-- It is required to enter data for undersaturated oil for the highest GOR
-- (i.e. the last row) in the PVTO table.
-- In order to fulfill this requirement, values for oil FVF and viscosity
-- at 9014.7psia and GOR=1.618 for undersaturated oil have been approximated:
-- It has been assumed that there is a linear relation between the GOR
-- and the FVF when keeping the pressure constant at 9014.7psia.
-- From Odeh we know that (at 9014.7psia) the FVF is 2.357 at GOR=2.984
-- for saturated oil and that the FVF is 1.579 at GOR=1.27 for undersaturated oil,
-- so it is possible to use the assumption described above.
-- An equivalent approximation for the viscosity has been used.
/
REGIONS
FIPNUM
300*1 /
SOLUTION
-- -------------------------------------------------------------------------
EQUIL
-- Item 1: datum depth (ft)
-- Item 2: pressure at datum depth (psia)
-- - Odeh's table 1 says that initial reservoir pressure is
-- 4800 psi at 8400ft, which explains choice of item 1 and 2
-- Item 3: depth of water-oil contact (ft)
-- - chosen to be directly under the reservoir
-- Item 4: oil-water capillary pressure at the water oil contact (psi)
-- - given to be 0 in Odeh's paper
-- Item 5: depth of gas-oil contact (ft)
-- - chosen to be directly above the reservoir
-- Item 6: gas-oil capillary pressure at gas-oil contact (psi)
-- - given to be 0 in Odeh's paper
-- Item 7: RSVD-table
-- Item 8: RVVD-table
-- Item 9: Set to 0 as this is the only value supported by OPM
-- Item #: 1 2 3 4 5 6 7 8 9
8400 4800 8450 0 8300 0 1 0 0 /
RSVD
-- Dissolved GOR is initially constant with depth through the reservoir.
-- The reason is that the initial reservoir pressure given is higher
---than the bubble point presssure of 4014.7psia, meaning that there is no
-- free gas initially present.
8300 1.270
8450 1.270 /
SUMMARY
-- -------------------------------------------------------------------------
DATE
RPR__NUM
/
RUNSUM
FMWPA
FMWIA
-- 1a) Oil rate vs time
FOPR
-- Field Oil Production Rate
-- 1b) GOR vs time
WGOR
-- Well Gas-Oil Ratio
'PROD'
/
-- Using FGOR instead of WGOR:PROD results in the same graph
FGOR
-- 2a) Pressures of the cell where the injector and producer are located
BPR
1 1 1 /
10 10 3 /
/
-- 2b) Gas saturation at grid points given in Odeh's paper
BGSAT
1 1 1 /
1 1 2 /
1 1 3 /
10 1 1 /
10 1 2 /
10 1 3 /
10 10 1 /
10 10 2 /
10 10 3 /
/
-- In order to compare Eclipse with Flow:
WBHP
'INJ'
'PROD'
/
WGIR
'INJ'
'PROD'
/
WGIT
'INJ'
'PROD'
/
WGPR
'INJ'
'PROD'
/
WGPT
'INJ'
'PROD'
/
WOIR
'INJ'
'PROD'
/
WOIT
'INJ'
'PROD'
/
WOPR
'INJ'
'PROD'
/
WOPT
'INJ'
'PROD'
/
WWIR
'INJ'
'PROD'
/
WWIT
'INJ'
'PROD'
/
WWPR
'INJ'
'PROD'
/
WWPT
'INJ'
'PROD'
/
SCHEDULE
-- -------------------------------------------------------------------------
RPTSCHED
'PRES' 'SGAS' 'RS' 'WELLS' 'WELSPECS' /
RPTRST
'BASIC=1' /
-- If no resolution (i.e. case 1), the two following lines must be added:
DRSDT
0 /
-- if DRSDT is set to 0, GOR cannot rise and free gas does not
-- dissolve in undersaturated oil -> constant bubble point pressure
WELSPECS
-- Item #: 1 2 3 4 5 6
'PROD' 'G1' 10 10 8400 'OIL' /
'INJ' 'G1' 1 1 8335 'GAS' /
'RFTP' 'G1' 10 10 8400 'OIL' /
'RFTI' 'G1' 9 9 8400 'WATER' /
/
-- Coordinates in item 3-4 are retrieved from Odeh's figure 1 and 2
-- Note that the depth at the midpoint of the well grid blocks
-- has been used as reference depth for bottom hole pressure in item 5
COMPDAT
-- Item #: 1 2 3 4 5 6 7 8 9
'PROD' 10 10 3 3 'OPEN' 1* 1* 0.5 /
'RFTP' 10 10 3 3 'OPEN' 1* 1* 0.5 /
'RFTI' 9 9 3 3 'OPEN' 1* 1* 0.5 /
'INJ' 1 1 1 1 'OPEN' 1* 1* 0.5 /
/
-- Coordinates in item 2-5 are retreived from Odeh's figure 1 and 2
-- Item 9 is the well bore internal diameter,
-- the radius is given to be 0.25ft in Odeh's paper
WCONPROD
-- Item #:1 2 3 4 5 9
'PROD' 'OPEN' 'ORAT' 20000 4* 1000 /
'RFTP' 'SHUT' 'ORAT' 20000 4* 1000 /
/
-- It is stated in Odeh's paper that the maximum oil prod. rate
-- is 20 000stb per day which explains the choice of value in item 4.
-- The items > 4 are defaulted with the exception of item 9,
-- the BHP lower limit, which is given to be 1000psia in Odeh's paper
WCONINJE
-- Item #:1 2 3 4 5 6 7
'INJ' 'GAS' 'OPEN' 'RATE' 100000 1* 9014 /
'RFTI' 'GAS' 'SHUT' 'RATE' 0 /
/
-- Stated in Odeh that gas inj. rate (item 5) is 100MMscf per day
-- BHP upper limit (item 7) should not be exceeding the highest
-- pressure in the PVT table=9014.7psia (default is 100 000psia)
WELOPEN
'RFTP' OPEN /
'RFTI' OPEN /
/
WCONHIST
'RFTP' 'OPEN' 'RESV' 0 /
/
WCONINJE
'RFTI' 'GAS' 'OPEN' 'RATE' 0 /
/
WELOPEN
'RFTP' 'SHUT' /
'RFTI' 'STOP' /
/
RPTONLY
DATES
1 'FEB' 2015 /
1 'MAR' 2015 /
1 'APR' 2015 /
1 'MAY' 2015 /
1 'JUN' 2015 /
1 'JLY' 2015 /
1 'AUG' 2015 /
1 'SEP' 2015 /
1 'OCT' 2015 /
1 'NOV' 2015 /
1 'DEC' 2015 /
1 'JAN' 2016 /
/
RPTONLYO
DATES
1 'APR' 2016 /
/
END

View File

@ -239,3 +239,77 @@ BOOST_AUTO_TEST_CASE(RUN_SUMTHIN) {
}
}
}
BOOST_AUTO_TEST_CASE(RUN_RPTONLY) {
const Deck deck = Parser{}.parseFile("SPE1CASE1_RPTONLY.DATA");
const EclipseState state(deck);
Schedule schedule(deck, state, std::make_shared<Python>());
const SummaryConfig summary_config(deck, schedule, state.fieldProps(), state.aquifer());
msim msim(state);
msim.well_rate("PROD", data::Rates::opt::oil, prod_opr);
msim.well_rate("RFTP", data::Rates::opt::oil, prod_rft);
msim.well_rate("RFTI", data::Rates::opt::wat, inj_rfti);
msim.well_rate("INJ", data::Rates::opt::gas, inj_inj);
msim.solution("PRESSURE", pressure);
{
const WorkArea work_area("test_msim");
EclipseIO io(state, state.getInputGrid(), schedule, summary_config);
// TSTEP = N*7
msim.run(schedule, io, false);
// clang-format off
const auto expect_smry_time = std::vector<double> {
// RPTONLY
31.0, // 2015-02-01
59.0, // 2015-03-01
90.0, // 2015-04-01
120.0, // 2015-05-01
151.0, // 2015-06-01
181.0, // 2015-07-01
212.0, // 2015-08-01
243.0, // 2015-09-01
273.0, // 2015-10-01
304.0, // 2015-11-01
334.0, // 2015-12-01
365.0, // 2016-01-01
// RPTONLYO (turn off 'RPTONLY')
// => summary output every timestep (DT = 7 days)
372.0, 379.0, 386.0, 393.0, 400.0, 407.0, 414.0,
421.0, 428.0, 435.0, 442.0, 449.0, 456.0,
};
// clang-format on
{
const auto smry = EclIO::ESmry("SPE1CASE1_RPTONLY");
const auto& time = smry.get("TIME");
const auto& dates = smry.dates();
const auto report_date = TimeStampUTC(2016, 1, 1);
/*
Verify that:
1. Summary output happens at expected times.
2. The exact report date 2016-01-01 is present.
*/
const auto nstep = expect_smry_time.size();
BOOST_REQUIRE_EQUAL(time.size(), nstep);
for (auto step = 0*nstep; step < nstep; ++step) {
BOOST_CHECK_CLOSE(time[step], expect_smry_time[step], 1.0e-10);
}
const auto report_found =
std::any_of(dates.begin(), dates.begin() + nstep - 1,
[&report_date](const auto date)
{
return report_date == TimeStampUTC(std::chrono::system_clock::to_time_t(date));
});
BOOST_CHECK_MESSAGE(report_found, "Expected report date missing");
}
}
}