implement Stone1 three-phase fluid-matrixinteractions for ECL problems
This commit is contained in:
parent
c7c4784746
commit
d46f4bafe3
351
opm/material/fluidmatrixinteractions/EclStone1Material.hpp
Normal file
351
opm/material/fluidmatrixinteractions/EclStone1Material.hpp
Normal file
@ -0,0 +1,351 @@
|
||||
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
||||
// vi: set et ts=4 sw=4 sts=4:
|
||||
/*
|
||||
Copyright (C) 2008-2015 by Andreas Lauser
|
||||
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
/*!
|
||||
* \file
|
||||
* \copydoc Opm::EclStone1Material
|
||||
*/
|
||||
#ifndef OPM_ECL_STONE1_MATERIAL_HPP
|
||||
#define OPM_ECL_STONE1_MATERIAL_HPP
|
||||
|
||||
#include "EclStone1MaterialParams.hpp"
|
||||
|
||||
#include <opm/material/common/Valgrind.hpp>
|
||||
#include <opm/material/common/MathToolbox.hpp>
|
||||
|
||||
#include <opm/material/common/Exceptions.hpp>
|
||||
#include <opm/material/common/ErrorMacros.hpp>
|
||||
|
||||
#include <algorithm>
|
||||
#include <cmath>
|
||||
|
||||
namespace Opm {
|
||||
|
||||
/*!
|
||||
* \ingroup material
|
||||
*
|
||||
* \brief Implements the second phase capillary pressure/relperm law suggested by Stone
|
||||
* as used by the ECLipse simulator.
|
||||
*
|
||||
* This material law is valid for three fluid phases and only depends
|
||||
* on the saturations.
|
||||
*
|
||||
* The required two-phase relations are supplied by means of template
|
||||
* arguments and can be an arbitrary other material laws. (Provided
|
||||
* that these only depend on saturation.)
|
||||
*/
|
||||
template <class TraitsT,
|
||||
class GasOilMaterialLawT,
|
||||
class OilWaterMaterialLawT,
|
||||
class ParamsT = EclStone1MaterialParams<TraitsT,
|
||||
typename GasOilMaterialLawT::Params,
|
||||
typename OilWaterMaterialLawT::Params> >
|
||||
class EclStone1Material : public TraitsT
|
||||
{
|
||||
public:
|
||||
typedef GasOilMaterialLawT GasOilMaterialLaw;
|
||||
typedef OilWaterMaterialLawT OilWaterMaterialLaw;
|
||||
|
||||
// some safety checks
|
||||
static_assert(TraitsT::numPhases == 3,
|
||||
"The number of phases considered by this capillary pressure "
|
||||
"law is always three!");
|
||||
static_assert(GasOilMaterialLaw::numPhases == 2,
|
||||
"The number of phases considered by the gas-oil capillary "
|
||||
"pressure law must be two!");
|
||||
static_assert(OilWaterMaterialLaw::numPhases == 2,
|
||||
"The number of phases considered by the oil-water capillary "
|
||||
"pressure law must be two!");
|
||||
static_assert(std::is_same<typename GasOilMaterialLaw::Scalar,
|
||||
typename OilWaterMaterialLaw::Scalar>::value,
|
||||
"The two two-phase capillary pressure laws must use the same "
|
||||
"type of floating point values.");
|
||||
|
||||
static_assert(GasOilMaterialLaw::implementsTwoPhaseSatApi,
|
||||
"The gas-oil material law must implement the two-phase saturation "
|
||||
"only API to for the default Ecl capillary pressure law!");
|
||||
static_assert(OilWaterMaterialLaw::implementsTwoPhaseSatApi,
|
||||
"The oil-water material law must implement the two-phase saturation "
|
||||
"only API to for the default Ecl capillary pressure law!");
|
||||
|
||||
typedef TraitsT Traits;
|
||||
typedef ParamsT Params;
|
||||
typedef typename Traits::Scalar Scalar;
|
||||
|
||||
static const int numPhases = 3;
|
||||
static const int waterPhaseIdx = Traits::wettingPhaseIdx;
|
||||
static const int oilPhaseIdx = Traits::nonWettingPhaseIdx;
|
||||
static const int gasPhaseIdx = Traits::gasPhaseIdx;
|
||||
|
||||
//! Specify whether this material law implements the two-phase
|
||||
//! convenience API
|
||||
static const bool implementsTwoPhaseApi = false;
|
||||
|
||||
//! Specify whether this material law implements the two-phase
|
||||
//! convenience API which only depends on the phase saturations
|
||||
static const bool implementsTwoPhaseSatApi = false;
|
||||
|
||||
//! Specify whether the quantities defined by this material law
|
||||
//! are saturation dependent
|
||||
static const bool isSaturationDependent = true;
|
||||
|
||||
//! Specify whether the quantities defined by this material law
|
||||
//! are dependent on the absolute pressure
|
||||
static const bool isPressureDependent = false;
|
||||
|
||||
//! Specify whether the quantities defined by this material law
|
||||
//! are temperature dependent
|
||||
static const bool isTemperatureDependent = false;
|
||||
|
||||
//! Specify whether the quantities defined by this material law
|
||||
//! are dependent on the phase composition
|
||||
static const bool isCompositionDependent = false;
|
||||
|
||||
/*!
|
||||
* \brief Implements the default three phase capillary pressure law
|
||||
* used by the ECLipse simulator.
|
||||
*
|
||||
* This material law is valid for three fluid phases and only
|
||||
* depends on the saturations.
|
||||
*
|
||||
* The required two-phase relations are supplied by means of template
|
||||
* arguments and can be an arbitrary other material laws.
|
||||
*
|
||||
* \param values Container for the return values
|
||||
* \param params Parameters
|
||||
* \param state The fluid state
|
||||
*/
|
||||
template <class ContainerT, class FluidState>
|
||||
static void capillaryPressures(ContainerT &values,
|
||||
const Params ¶ms,
|
||||
const FluidState &state)
|
||||
{
|
||||
typedef typename std::remove_reference<decltype(values[0])>::type Evaluation;
|
||||
values[gasPhaseIdx] = pcgn<FluidState, Evaluation>(params, state);
|
||||
values[oilPhaseIdx] = 0;
|
||||
values[waterPhaseIdx] = - pcnw<FluidState, Evaluation>(params, state);
|
||||
Valgrind::CheckDefined(values[gasPhaseIdx]);
|
||||
Valgrind::CheckDefined(values[oilPhaseIdx]);
|
||||
Valgrind::CheckDefined(values[waterPhaseIdx]);
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Capillary pressure between the gas and the non-wetting
|
||||
* liquid (i.e., oil) phase.
|
||||
*
|
||||
* This is defined as
|
||||
* \f[
|
||||
* p_{c,gn} = p_g - p_n
|
||||
* \f]
|
||||
*/
|
||||
template <class FluidState, class Evaluation = typename FluidState::Scalar>
|
||||
static Evaluation pcgn(const Params ¶ms,
|
||||
const FluidState &fs)
|
||||
{
|
||||
typedef MathToolbox<typename FluidState::Scalar> FsToolbox;
|
||||
|
||||
const auto& Sw = 1.0 - FsToolbox::template toLhs<Evaluation>(fs.saturation(gasPhaseIdx));
|
||||
return GasOilMaterialLaw::twoPhaseSatPcnw(params.gasOilParams(), Sw);
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Capillary pressure between the non-wetting liquid (i.e.,
|
||||
* oil) and the wetting liquid (i.e., water) phase.
|
||||
*
|
||||
* This is defined as
|
||||
* \f[
|
||||
* p_{c,nw} = p_n - p_w
|
||||
* \f]
|
||||
*/
|
||||
template <class FluidState, class Evaluation = typename FluidState::Scalar>
|
||||
static Evaluation pcnw(const Params ¶ms,
|
||||
const FluidState &fs)
|
||||
{
|
||||
typedef MathToolbox<typename FluidState::Scalar> FsToolbox;
|
||||
|
||||
const auto& Sw = FsToolbox::template toLhs<Evaluation>(fs.saturation(waterPhaseIdx));
|
||||
Valgrind::CheckDefined(Sw);
|
||||
const auto& result = OilWaterMaterialLaw::twoPhaseSatPcnw(params.oilWaterParams(), Sw);
|
||||
Valgrind::CheckDefined(result);
|
||||
return result;
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief The inverse of the capillary pressure
|
||||
*/
|
||||
template <class ContainerT, class FluidState>
|
||||
static void saturations(ContainerT &values,
|
||||
const Params ¶ms,
|
||||
const FluidState &fs)
|
||||
{
|
||||
OPM_THROW(std::logic_error, "Not implemented: saturations()");
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief The saturation of the gas phase.
|
||||
*/
|
||||
template <class FluidState, class Evaluation = typename FluidState::Scalar>
|
||||
static Evaluation Sg(const Params ¶ms,
|
||||
const FluidState &fluidState)
|
||||
{
|
||||
OPM_THROW(std::logic_error, "Not implemented: Sg()");
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief The saturation of the non-wetting (i.e., oil) phase.
|
||||
*/
|
||||
template <class FluidState, class Evaluation = typename FluidState::Scalar>
|
||||
static Evaluation Sn(const Params ¶ms,
|
||||
const FluidState &fluidState)
|
||||
{
|
||||
OPM_THROW(std::logic_error, "Not implemented: Sn()");
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief The saturation of the wetting (i.e., water) phase.
|
||||
*/
|
||||
template <class FluidState, class Evaluation = typename FluidState::Scalar>
|
||||
static Evaluation Sw(const Params ¶ms,
|
||||
const FluidState &fluidState)
|
||||
{
|
||||
OPM_THROW(std::logic_error, "Not implemented: Sw()");
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief The relative permeability of all phases.
|
||||
*
|
||||
* The relative permeability of the water phase it uses the same
|
||||
* value as the relative permeability for water in the water-oil
|
||||
* law with \f$S_o = 1 - S_w\f$. The gas relative permebility is
|
||||
* taken from the gas-oil material law, but with \f$S_o = 1 -
|
||||
* S_g\f$. The relative permeability of the oil phase is
|
||||
* calculated using the relative permeabilities of the oil phase
|
||||
* in the two two-phase systems.
|
||||
*
|
||||
* A more detailed description can be found in the "Three phase
|
||||
* oil relative permeability models" section of the ECLipse
|
||||
* technical description.
|
||||
*/
|
||||
template <class ContainerT, class FluidState>
|
||||
static void relativePermeabilities(ContainerT &values,
|
||||
const Params ¶ms,
|
||||
const FluidState &fluidState)
|
||||
{
|
||||
typedef typename std::remove_reference<decltype(values[0])>::type Evaluation;
|
||||
|
||||
values[waterPhaseIdx] = krw<FluidState, Evaluation>(params, fluidState);
|
||||
values[oilPhaseIdx] = krn<FluidState, Evaluation>(params, fluidState);
|
||||
values[gasPhaseIdx] = krg<FluidState, Evaluation>(params, fluidState);
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief The relative permeability of the gas phase.
|
||||
*/
|
||||
template <class FluidState, class Evaluation = typename FluidState::Scalar>
|
||||
static Evaluation krg(const Params ¶ms,
|
||||
const FluidState &fluidState)
|
||||
{
|
||||
typedef MathToolbox<typename FluidState::Scalar> FsToolbox;
|
||||
|
||||
const Evaluation& Sw = 1 - FsToolbox::template toLhs<Evaluation>(fluidState.saturation(gasPhaseIdx));
|
||||
return GasOilMaterialLaw::twoPhaseSatKrn(params.gasOilParams(), Sw);
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief The relative permeability of the wetting phase.
|
||||
*/
|
||||
template <class FluidState, class Evaluation = typename FluidState::Scalar>
|
||||
static Evaluation krw(const Params ¶ms,
|
||||
const FluidState &fluidState)
|
||||
{
|
||||
typedef MathToolbox<typename FluidState::Scalar> FsToolbox;
|
||||
|
||||
const Evaluation& Sw = FsToolbox::template toLhs<Evaluation>(fluidState.saturation(waterPhaseIdx));
|
||||
return OilWaterMaterialLaw::twoPhaseSatKrw(params.oilWaterParams(), Sw);
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief The relative permeability of the non-wetting (i.e., oil) phase.
|
||||
*/
|
||||
template <class FluidState, class Evaluation = typename FluidState::Scalar>
|
||||
static Evaluation krn(const Params ¶ms,
|
||||
const FluidState &fluidState)
|
||||
{
|
||||
typedef MathToolbox<Evaluation> Toolbox;
|
||||
typedef MathToolbox<typename FluidState::Scalar> FsToolbox;
|
||||
|
||||
// the Eclipse docu is inconsistent here: In some places the connate water
|
||||
// saturation is represented by "Swl", in others "Swco" is used.
|
||||
Scalar Swco = params.Swl();
|
||||
|
||||
Scalar Sowcr = params.Sowcr();
|
||||
Scalar Sogcr = params.Sogcr();
|
||||
Scalar Som = std::min(Sowcr, Sogcr); // minimum residual oil saturation
|
||||
|
||||
Scalar eta = params.eta(); // exponent of the beta term
|
||||
|
||||
const Evaluation& Sw = FsToolbox::template toLhs<Evaluation>(fluidState.saturation(waterPhaseIdx));
|
||||
const Evaluation& So = FsToolbox::template toLhs<Evaluation>(fluidState.saturation(oilPhaseIdx));
|
||||
const Evaluation& Sg = FsToolbox::template toLhs<Evaluation>(fluidState.saturation(gasPhaseIdx));
|
||||
|
||||
Evaluation SSw;
|
||||
if (Sw > Swco)
|
||||
SSw = (Sw - Swco)/(1 - Swco - Som);
|
||||
else
|
||||
SSw = 0.0;
|
||||
|
||||
Evaluation SSo;
|
||||
if (So > Som)
|
||||
SSo = (So - Som)/(1 - Swco - Som);
|
||||
else
|
||||
SSo = 0.0;
|
||||
|
||||
Evaluation SSg = Sg/(1 - Swco - Som);
|
||||
|
||||
Scalar krocw = OilWaterMaterialLaw::twoPhaseSatKrn(params.oilWaterParams(), Swco);
|
||||
Evaluation krow = OilWaterMaterialLaw::twoPhaseSatKrn(params.oilWaterParams(), Sw);
|
||||
Evaluation krog = GasOilMaterialLaw::twoPhaseSatKrw(params.gasOilParams(), 1 - Sg);
|
||||
|
||||
Evaluation beta = Toolbox::pow(SSo/((1 - SSw)*(1 - SSg)), eta);
|
||||
return beta*krow*krog/krocw;
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Update the hysteresis parameters after a time step.
|
||||
*
|
||||
* This assumes that the nested two-phase material laws are parameters for
|
||||
* EclHysteresisLaw. If they are not, calling this methid will cause a compiler
|
||||
* error. (But not calling it will still work.)
|
||||
*/
|
||||
template <class FluidState>
|
||||
static void updateHysteresis(Params ¶ms, const FluidState &fluidState)
|
||||
{
|
||||
typedef MathToolbox<typename FluidState::Scalar> FsToolbox;
|
||||
|
||||
Scalar Sw = FsToolbox::value(fluidState.saturation(waterPhaseIdx));
|
||||
Scalar Sg = FsToolbox::value(fluidState.saturation(gasPhaseIdx));
|
||||
|
||||
params.oilWaterParams().update(/*pcSw=*/Sw, /*krwSw=*/Sw, /*krnSw=*/Sw);
|
||||
params.gasOilParams().update(/*pcSw=*/1 - Sg, /*krwSw=*/1 - Sg, /*krnSw=*/1 - Sg);
|
||||
}
|
||||
};
|
||||
} // namespace Opm
|
||||
|
||||
#endif
|
185
opm/material/fluidmatrixinteractions/EclStone1MaterialParams.hpp
Normal file
185
opm/material/fluidmatrixinteractions/EclStone1MaterialParams.hpp
Normal file
@ -0,0 +1,185 @@
|
||||
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
||||
// vi: set et ts=4 sw=4 sts=4:
|
||||
/*
|
||||
Copyright (C) 2015 by Andreas Lauser
|
||||
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
/*!
|
||||
* \file
|
||||
* \copydoc Opm::EclStone1MaterialParams
|
||||
*/
|
||||
#ifndef OPM_ECL_STONE1_MATERIAL_PARAMS_HPP
|
||||
#define OPM_ECL_STONE1_MATERIAL_PARAMS_HPP
|
||||
|
||||
#include <type_traits>
|
||||
#include <cassert>
|
||||
#include <memory>
|
||||
|
||||
namespace Opm {
|
||||
|
||||
/*!
|
||||
* \brief Default implementation for the parameters required by the
|
||||
* three-phase capillary pressure/relperm Stone 2 model used by
|
||||
* Eclipse.
|
||||
*
|
||||
* Essentially, this class just stores the two parameter objects for
|
||||
* the twophase capillary pressure laws.
|
||||
*/
|
||||
template<class Traits, class GasOilParamsT, class OilWaterParamsT>
|
||||
class EclStone1MaterialParams
|
||||
{
|
||||
typedef typename Traits::Scalar Scalar;
|
||||
enum { numPhases = 3 };
|
||||
|
||||
public:
|
||||
typedef GasOilParamsT GasOilParams;
|
||||
typedef OilWaterParamsT OilWaterParams;
|
||||
|
||||
/*!
|
||||
* \brief The default constructor.
|
||||
*/
|
||||
EclStone1MaterialParams()
|
||||
{
|
||||
#ifndef NDEBUG
|
||||
finalized_ = false;
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Finish the initialization of the parameter object.
|
||||
*/
|
||||
void finalize()
|
||||
{
|
||||
#ifndef NDEBUG
|
||||
finalized_ = true;
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief The parameter object for the gas-oil twophase law.
|
||||
*/
|
||||
const GasOilParams& gasOilParams() const
|
||||
{ assertFinalized_(); return *gasOilParams_; }
|
||||
|
||||
/*!
|
||||
* \brief The parameter object for the gas-oil twophase law.
|
||||
*/
|
||||
GasOilParams& gasOilParams()
|
||||
{ assertFinalized_(); return *gasOilParams_; }
|
||||
|
||||
/*!
|
||||
* \brief Set the parameter object for the gas-oil twophase law.
|
||||
*/
|
||||
void setGasOilParams(std::shared_ptr<GasOilParams> val)
|
||||
{ gasOilParams_ = val; }
|
||||
|
||||
/*!
|
||||
* \brief The parameter object for the oil-water twophase law.
|
||||
*/
|
||||
const OilWaterParams& oilWaterParams() const
|
||||
{ assertFinalized_(); return *oilWaterParams_; }
|
||||
|
||||
/*!
|
||||
* \brief The parameter object for the oil-water twophase law.
|
||||
*/
|
||||
OilWaterParams& oilWaterParams()
|
||||
{ assertFinalized_(); return *oilWaterParams_; }
|
||||
|
||||
/*!
|
||||
* \brief Set the parameter object for the oil-water twophase law.
|
||||
*/
|
||||
void setOilWaterParams(std::shared_ptr<OilWaterParams> val)
|
||||
{ oilWaterParams_ = val; }
|
||||
|
||||
/*!
|
||||
* \brief Set the saturation of "connate" water.
|
||||
*
|
||||
* According to
|
||||
*
|
||||
* http://www.glossary.oilfield.slb.com/en/Terms/c/connate_water.aspx
|
||||
*
|
||||
* the connate water is the water which is trapped in the pores of the rock during
|
||||
* the rock's formation. For our application, this is basically a reduction of the
|
||||
* rock's porosity...
|
||||
*/
|
||||
void setSwl(Scalar val)
|
||||
{ Swl_ = val; }
|
||||
|
||||
/*!
|
||||
* \brief Return the saturation of "connate" water.
|
||||
*/
|
||||
Scalar Swl() const
|
||||
{ assertFinalized_(); return Swl_; }
|
||||
|
||||
/*!
|
||||
* \brief Set the critical saturation of oil in the water-oil system.
|
||||
*/
|
||||
void setSowcr(Scalar val)
|
||||
{ Sowcr_ = val; }
|
||||
|
||||
/*!
|
||||
* \brief Return the critical saturation of oil in the water-oil system.
|
||||
*/
|
||||
Scalar Sowcr() const
|
||||
{ assertFinalized_(); return Sowcr_; }
|
||||
|
||||
/*!
|
||||
* \brief Set the critical saturation of oil in the oil-gas system.
|
||||
*/
|
||||
void setSogcr(Scalar val)
|
||||
{ Sogcr_ = val; }
|
||||
|
||||
/*!
|
||||
* \brief Return the critical saturation of oil in the oil-gas system.
|
||||
*/
|
||||
Scalar Sogcr() const
|
||||
{ assertFinalized_(); return Sogcr_; }
|
||||
|
||||
/*!
|
||||
* \brief Set the exponent of the extended Stone 1 model.
|
||||
*/
|
||||
void setEta(Scalar val)
|
||||
{ eta_ = val; }
|
||||
|
||||
/*!
|
||||
* \brief Return the exponent of the extended Stone 1 model.
|
||||
*/
|
||||
Scalar eta() const
|
||||
{ assertFinalized_(); return eta_; }
|
||||
|
||||
private:
|
||||
#ifndef NDEBUG
|
||||
void assertFinalized_() const
|
||||
{ assert(finalized_); }
|
||||
|
||||
bool finalized_;
|
||||
#else
|
||||
void assertFinalized_() const
|
||||
{ }
|
||||
#endif
|
||||
|
||||
std::shared_ptr<GasOilParams> gasOilParams_;
|
||||
std::shared_ptr<OilWaterParams> oilWaterParams_;
|
||||
|
||||
Scalar Swl_;
|
||||
Scalar Sowcr_;
|
||||
Scalar Sogcr_;
|
||||
Scalar eta_;
|
||||
};
|
||||
} // namespace Opm
|
||||
|
||||
#endif
|
@ -39,12 +39,13 @@
|
||||
#include <opm/material/fluidmatrixinteractions/RegularizedBrooksCorey.hpp>
|
||||
#include <opm/material/fluidmatrixinteractions/RegularizedVanGenuchten.hpp>
|
||||
#include <opm/material/fluidmatrixinteractions/EffToAbsLaw.hpp>
|
||||
#include <opm/material/fluidmatrixinteractions/EclDefaultMaterial.hpp>
|
||||
#include <opm/material/fluidmatrixinteractions/PiecewiseLinearTwoPhaseMaterial.hpp>
|
||||
#include <opm/material/fluidmatrixinteractions/SplineTwoPhaseMaterial.hpp>
|
||||
#include <opm/material/fluidmatrixinteractions/ThreePhaseParkerVanGenuchten.hpp>
|
||||
#include <opm/material/fluidmatrixinteractions/EclEpsTwoPhaseLaw.hpp>
|
||||
#include <opm/material/fluidmatrixinteractions/EclHysteresisTwoPhaseLaw.hpp>
|
||||
#include <opm/material/fluidmatrixinteractions/EclDefaultMaterial.hpp>
|
||||
#include <opm/material/fluidmatrixinteractions/EclStone1Material.hpp>
|
||||
|
||||
// include the helper classes to construct traits
|
||||
#include <opm/material/fluidmatrixinteractions/MaterialTraits.hpp>
|
||||
@ -323,6 +324,15 @@ int main(int argc, char **argv)
|
||||
testThreePhaseApi<MaterialLaw, ThreePhaseFluidState>();
|
||||
//testThreePhaseSatApi<MaterialLaw, ThreePhaseFluidState>();
|
||||
}
|
||||
{
|
||||
typedef Opm::BrooksCorey<TwoPhaseTraits> TwoPhaseMaterial;
|
||||
typedef Opm::EclStone1Material<ThreePhaseTraits,
|
||||
/*GasOilMaterial=*/TwoPhaseMaterial,
|
||||
/*OilWaterMaterial=*/TwoPhaseMaterial> MaterialLaw;
|
||||
testGenericApi<MaterialLaw, ThreePhaseFluidState>();
|
||||
testThreePhaseApi<MaterialLaw, ThreePhaseFluidState>();
|
||||
//testThreePhaseSatApi<MaterialLaw, ThreePhaseFluidState>();
|
||||
}
|
||||
{
|
||||
typedef Opm::ThreePhaseParkerVanGenuchten<ThreePhaseTraits> MaterialLaw;
|
||||
testGenericApi<MaterialLaw, ThreePhaseFluidState>();
|
||||
@ -334,7 +344,8 @@ int main(int argc, char **argv)
|
||||
testGenericApi<MaterialLaw, TwoPhaseFluidState>();
|
||||
testTwoPhaseApi<MaterialLaw, TwoPhaseFluidState>();
|
||||
testTwoPhaseSatApi<MaterialLaw, TwoPhaseFluidState>();
|
||||
|
||||
}
|
||||
{
|
||||
typedef Opm::NullMaterial<ThreePhaseTraits> ThreePMaterialLaw;
|
||||
testGenericApi<ThreePMaterialLaw, ThreePhaseFluidState>();
|
||||
testThreePhaseApi<ThreePMaterialLaw, ThreePhaseFluidState>();
|
||||
@ -392,6 +403,5 @@ int main(int argc, char **argv)
|
||||
testTwoPhaseSatApi<MaterialLaw, TwoPhaseFluidState>();
|
||||
}
|
||||
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user