testing all three solution strategies for test_threecomponents_ptflash

and also, the reference result comparison is added.
This commit is contained in:
Kai Bao 2022-06-29 23:38:09 +02:00
parent f0d8a9f3cc
commit dac57ac2eb
4 changed files with 158 additions and 19 deletions

View File

@ -2,6 +2,7 @@
// vi: set et ts=4 sw=4 sts=4:
/*
Copyright 2022 NORCE.
Copyright 2022 SINTEF Digital, Mathematics and Cybernetics.
This file is part of the Open Porous Media project (OPM).
@ -1209,11 +1210,14 @@ protected:
}
}
throw std::runtime_error("Successive substitution composition update did not converge within maxIterations");
if (!newton_afterwards) {
throw std::runtime_error(
"Successive substitution composition update did not converge within maxIterations");
}
}
};//end PTFlash
} // namespace Opm
#endif
#endif

View File

@ -1,3 +1,28 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
Copyright 2022 SINTEF Digital, Mathematics and Cybernetics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
#ifndef OPM_THREECOMPONENTFLUIDSYSTEM_HH
#define OPM_THREECOMPONENTFLUIDSYSTEM_HH
@ -195,4 +220,4 @@ namespace Opm {
};
}
#endif //OPM_THREECOMPONENTFLUIDSYSTEM_HH
#endif //OPM_THREECOMPONENTFLUIDSYSTEM_HH

View File

@ -27,8 +27,8 @@
* \copydoc Opm::ViscosityModels
*/
#ifndef LBC_MODIFIED_HPP
#define LBC_MODIFIED_HPP
#ifndef OPM_LBC_CO2RICH_HPP
#define OPM_LBC_CO2RICH_HPP
#include <cmath>
#include <vector>
@ -130,4 +130,4 @@ public:
}; // namespace Opm
#endif // LBC_co2rich_HPP
#endif // OPM_LBC_CO2RICH_HPP

View File

@ -1,6 +1,8 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
Copyright 2022 SINTEF Digital, Mathematics and Cybernetics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
@ -37,18 +39,22 @@
#include <dune/common/parallel/mpihelper.hh>
void testPTFlash()
{
using Scalar = double;
using FluidSystem = Opm::ThreeComponentFluidSystem<Scalar>;
constexpr auto numComponents = FluidSystem::numComponents;
using Evaluation = Opm::DenseAd::Evaluation<double, numComponents>;
typedef Dune::FieldVector<Evaluation, numComponents> ComponentVector;
typedef Opm::CompositionalFluidState<Evaluation, FluidSystem> FluidState;
#include <stdexcept>
// It is a three component system
// Initial: the primary variables are, pressure, molar fractions of the first and second component
using Scalar = double;
using FluidSystem = Opm::ThreeComponentFluidSystem<Scalar>;
constexpr auto numComponents = FluidSystem::numComponents;
using Evaluation = Opm::DenseAd::Evaluation<double, numComponents>;
typedef Dune::FieldVector<Evaluation, numComponents> ComponentVector;
typedef Opm::CompositionalFluidState<Evaluation, FluidSystem> FluidState;
bool result_okay(const FluidState& fluid_state);
bool testPTFlash(const std::string& flash_twophase_method)
{
// Initial: the primary variables are, pressure, molar fractions of the first and second component
Evaluation p_init = Evaluation::createVariable(10e5, 0); // 10 bar
ComponentVector comp;
comp[0] = Evaluation::createVariable(0.5, 1);
@ -104,7 +110,7 @@ void testPTFlash()
// p And z is the primary variables
Evaluation z_last = 1.;
for (unsigned compIdx = 0; compIdx < numComponents - 1; ++compIdx) {
z[compIdx] = Evaluation::createVariable(Opm::getValue(z[compIdx]), compIdx + 1);
z[compIdx] = Evaluation::createVariable(Opm::getValue(z[compIdx]), int(compIdx) + 1);
z_last -= z[compIdx];
}
z[numComponents - 1] = z_last;
@ -112,7 +118,6 @@ void testPTFlash()
const double flash_tolerance = 1.e-12; // just to test the setup in co2-compositional
const int flash_verbosity = 1;
const std::string flash_twophase_method = "newton";
// TODO: should we set these?
// Set initial K and L
@ -127,13 +132,118 @@ void testPTFlash()
using Flash = Opm::PTFlash<double, FluidSystem>;
Flash::solve(fluid_state, z, spatialIdx, flash_verbosity, flash_twophase_method, flash_tolerance);
return result_okay(fluid_state);
}
bool result_okay(const FluidState& fluid_state)
{
bool res_okay = true;
auto almost_equal = [](const double x, const double y, const double rel_tol = 2.e-3, const double abs_tol = 1.e-5)->bool {
return std::fabs(x - y) <= rel_tol * std::fabs(x + y) * 2 || std::fabs(x - y) < abs_tol;
};
auto eval_almost_equal = [almost_equal](const Evaluation& val, const Evaluation& ref) -> bool {
bool equal_okay = true;
if (!almost_equal(val.value(), ref.value())) {
equal_okay = false;
std::cout << " the value are different with " << val.value() << " against the reference " << ref.value() << std::endl;
}
for (int i = 0; i < val.size(); ++i) {
if (!almost_equal(val.derivative(i), ref.derivative(i))) {
equal_okay = false;
std::cout << " the " << i << "th derivative is different with value " << val.derivative(i) << " against the reference " << ref.derivative(i) << std::endl;
}
}
return equal_okay;
};
ComponentVector x, y;
const Evaluation L = fluid_state.L();
for (unsigned comp_idx = 0; comp_idx < numComponents; ++comp_idx) {
x[comp_idx] = fluid_state.moleFraction(FluidSystem::oilPhaseIdx, comp_idx);
y[comp_idx] = fluid_state.moleFraction(FluidSystem::gasPhaseIdx, comp_idx);
}
Evaluation ref_L = 1 - 0.763309246;
ref_L.setDerivative(0, 4.072857907696467e-8);
ref_L.setDerivative(1, -1.1606117844565438);
ref_L.setDerivative(2, -1.2182584016253868);
ComponentVector ref_x;
ref_x[0].setValue(0.134348016);
ref_x[0].setDerivative(0, 1.225204984e-7);
ref_x[0].setDerivative(1, 0.1193427625186);
ref_x[0].setDerivative(2, -0.15685356397);
ref_x[1].setValue(0.021791990);
ref_x[1].setDerivative(0, 2.1923329015033e-8);
ref_x[1].setDerivative(1, -0.030587169734517);
ref_x[1].setDerivative(2, 0.0402010686143);
ref_x[2].setValue(0.84385999349);
ref_x[2].setDerivative(0, -1.44443827440285e-7);
ref_x[2].setDerivative(1, -0.088755592784150);
ref_x[2].setDerivative(2, 0.11665249535641);
ComponentVector ref_y;
ref_y[0].setValue(0.61338319);
ref_y[0].setDerivative(0, -1.2431457946797125e-8);
ref_y[0].setDerivative(1, 0.5447055650444589);
ref_y[0].setDerivative(2, -0.7159127825498286);
ref_y[1].setValue(0.38626813278337335);
ref_y[1].setDerivative(0, 1.2649586224979342e-8);
ref_y[1].setDerivative(1, -0.5447013877995585);
ref_y[1].setDerivative(2, 0.7159072923488614);
ref_y[2].setValue(0.00034866911404565206);
ref_y[2].setDerivative(0,-2.1812827818225162e-10);
ref_y[2].setDerivative(1, -4.177244900520176e-6);
ref_y[2].setDerivative(2, 5.490200967341757e-6);
for (unsigned comp_idx = 0; comp_idx < numComponents; ++comp_idx) {
if (!eval_almost_equal(x[comp_idx], ref_x[comp_idx])) {
res_okay = false;
std::cout << " the " << comp_idx << "th x does not match" << std::endl;
}
if (!eval_almost_equal(y[comp_idx], ref_y[comp_idx])) {
res_okay = false;
std::cout << " the " << comp_idx << "th x does not match" << std::endl;
}
}
if (!eval_almost_equal(L, ref_L)) {
res_okay = false;
std::cout << " the L does not match" << std::endl;
}
// TODO: we should also check densities, viscosities, saturations and so on
return res_okay;
}
int main(int argc, char **argv)
{
Dune::MPIHelper::instance(argc, argv);
bool test_passed = true;
testPTFlash();
std::vector<std::string> test_methods {"newton", "ssi", "ssi+newton"};
for (const auto& method : test_methods) {
if (!testPTFlash(method) ) {
std::cout << method << " solution for PTFlash failed " << std::endl;
test_passed = false;
} else {
std::cout << method << " solution for PTFlash passed " << std::endl;
}
}
if (!test_passed) {
throw std::runtime_error(" PTFlash tests failed");
}
return 0;
}