// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \brief This is the unit test for the H2-brine PVT model
*
* This test requires the presence of opm-common.
*/
#include "config.h"
#include
#define BOOST_TEST_MODULE H2BrinePvt
#include
#if !HAVE_ECL_INPUT
#error "The test for the H2-brine PVT classes requires eclipse input support in opm-common"
#endif
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
// values of strings based on the first SPE1 test case of opm-data. note that in the
// real world it does not make much sense to specify a fluid phase using more than a
// single keyword, but for a unit test, this saves a lot of boiler-plate code.
constexpr const char* deckString1 =
"RUNSPEC\n"
"\n"
"DIMENS\n"
" 10 10 3 /\n"
"\n"
"TABDIMS\n"
" * 1 /\n"
"\n"
"OIL\n"
"GAS\n"
"H2STORE\n"
"\n"
"DISGAS\n"
"\n"
"METRIC\n"
"\n"
"GRID\n"
"\n"
"DX\n"
" 300*1000 /\n"
"DY\n"
" 300*1000 /\n"
"DZ\n"
" 100*20 100*30 100*50 /\n"
"\n"
"TOPS\n"
" 100*1234 /\n"
"\n"
"PORO\n"
" 300*0.15 /\n"
"PROPS\n"
"\n";
constexpr const char* deckString2 =
"RUNSPEC\n"
"\n"
"DIMENS\n"
" 10 10 3 /\n"
"\n"
"TABDIMS\n"
" * 1 /\n"
"\n"
"WATER\n"
"GAS\n"
"H2STORE\n"
"\n"
"DISGASW\n"
"\n"
"METRIC\n"
"\n"
"GRID\n"
"\n"
"DX\n"
" 300*1000 /\n"
"DY\n"
" 300*1000 /\n"
"DZ\n"
" 100*20 100*30 100*50 /\n"
"\n"
"TOPS\n"
" 100*1234 /\n"
"\n"
"PORO\n"
" 300*0.15 /\n"
"PROPS\n"
"\n";
template
void ensurePvtApiBrine(const BrinePvt& brinePvt)
{
// we don't want to run this, we just want to make sure that it compiles
while (0) {
Evaluation temperature = 273.15 + 20.0;
Evaluation pressure = 1e5;
Evaluation saltconcentration = 0.0;
Evaluation rs = 0.0;
////
// Water PVT API
/////
std::cout << brinePvt.viscosity(/*regionIdx=*/0,
temperature,
pressure,
rs,
saltconcentration);
std::cout << brinePvt.inverseFormationVolumeFactor(/*regionIdx=*/0,
temperature,
pressure,
rs,
saltconcentration);
std::cout << brinePvt.internalEnergy(/*regionIdx=*/0,
temperature,
pressure,
rs,
saltconcentration);
}
}
template
void ensurePvtApiGas(const H2Pvt& h2Pvt)
{
// we don't want to run this, we just want to make sure that it compiles
while (0) {
Evaluation temperature = 273.15 + 20.0;
Evaluation pressure = 1e5;
Evaluation Rv = 0.0;
Evaluation Rvw = 0.0;
Evaluation So = 0.5;
Evaluation maxSo = 1.0;
/////
// H2 PVT API
/////
std::cout << h2Pvt.viscosity(/*regionIdx=*/0,
temperature,
pressure,
Rv,
Rvw);
std::cout << h2Pvt.inverseFormationVolumeFactor(/*regionIdx=*/0,
temperature,
pressure,
Rv,
Rvw);
std::cout << h2Pvt.saturatedViscosity(/*regionIdx=*/0,
temperature,
pressure);
std::cout << h2Pvt.saturatedInverseFormationVolumeFactor(/*regionIdx=*/0,
temperature,
pressure);
std::cout << h2Pvt.saturationPressure(/*regionIdx=*/0,
temperature,
Rv);
std::cout << h2Pvt.saturatedOilVaporizationFactor(/*regionIdx=*/0,
temperature,
pressure);
std::cout << h2Pvt.saturatedOilVaporizationFactor(/*regionIdx=*/0,
temperature,
pressure,
So,
maxSo);
}
}
template
void ensurePvtApiBrineOil(const BrinePvt& brinePvt)
{
// we don't want to run this, we just want to make sure that it compiles
while (0) {
Evaluation temperature = 273.15 + 20.0;
Evaluation pressure = 1e5;
Evaluation Rs = 0.0;
Evaluation So = 0.5;
Evaluation maxSo = 1.0;
/////
// brine PVT API
/////
std::cout << brinePvt.viscosity(/*regionIdx=*/0,
temperature,
pressure,
Rs);
std::cout << brinePvt.inverseFormationVolumeFactor(/*regionIdx=*/0,
temperature,
pressure,
Rs);
std::cout << brinePvt.saturatedViscosity(/*regionIdx=*/0,
temperature,
pressure);
std::cout << brinePvt.saturatedInverseFormationVolumeFactor(/*regionIdx=*/0,
temperature,
pressure);
std::cout << brinePvt.saturationPressure(/*regionIdx=*/0,
temperature,
Rs);
std::cout << brinePvt.saturatedGasDissolutionFactor(/*regionIdx=*/0,
temperature,
pressure);
std::cout << brinePvt.saturatedGasDissolutionFactor(/*regionIdx=*/0,
temperature,
pressure,
So,
maxSo);
}
}
using Types = boost::mpl::list;
BOOST_AUTO_TEST_CASE_TEMPLATE(Oil, Scalar, Types)
{
Opm::Parser parser;
auto python = std::make_shared();
auto deck1 = parser.parseString(deckString1);
Opm::EclipseState eclState1(deck1);
Opm::Schedule schedule1(deck1, eclState1, python);
Opm::GasPvtMultiplexer h2Pvt_oil;
Opm::OilPvtMultiplexer brinePvt_oil;
BOOST_CHECK_NO_THROW(h2Pvt_oil.initFromState(eclState1, schedule1));
BOOST_CHECK_NO_THROW(brinePvt_oil.initFromState(eclState1, schedule1));
using Eval = Opm::DenseAd::Evaluation;
ensurePvtApiGas(h2Pvt_oil);
ensurePvtApiBrineOil(brinePvt_oil);
}
BOOST_AUTO_TEST_CASE_TEMPLATE(Water, Scalar, Types) {
Opm::Parser parser;
auto python = std::make_shared();
auto deck2 = parser.parseString(deckString2);
Opm::EclipseState eclState2(deck2);
Opm::Schedule schedule2(deck2, eclState2, python);
Opm::GasPvtMultiplexer h2Pvt;
Opm::WaterPvtMultiplexer brinePvt;
BOOST_CHECK_NO_THROW(h2Pvt.initFromState(eclState2, schedule2));
BOOST_CHECK_NO_THROW(brinePvt.initFromState(eclState2, schedule2));
using Eval = Opm::DenseAd::Evaluation;
ensurePvtApiGas(h2Pvt);
ensurePvtApiBrine(brinePvt);
}