// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- // vi: set et ts=4 sw=4 sts=4: /* This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . Consult the COPYING file in the top-level source directory of this module for the precise wording of the license and the list of copyright holders. */ /*! * \file * * \brief This is the unit test for the H2-brine PVT model * * This test requires the presence of opm-common. */ #include "config.h" #include #define BOOST_TEST_MODULE H2BrinePvt #include #if !HAVE_ECL_INPUT #error "The test for the H2-brine PVT classes requires eclipse input support in opm-common" #endif #include #include #include #include #include #include #include #include #include #include #include // values of strings based on the first SPE1 test case of opm-data. note that in the // real world it does not make much sense to specify a fluid phase using more than a // single keyword, but for a unit test, this saves a lot of boiler-plate code. constexpr const char* deckString1 = "RUNSPEC\n" "\n" "DIMENS\n" " 10 10 3 /\n" "\n" "TABDIMS\n" " * 1 /\n" "\n" "OIL\n" "GAS\n" "H2STORE\n" "\n" "DISGAS\n" "\n" "METRIC\n" "\n" "GRID\n" "\n" "DX\n" " 300*1000 /\n" "DY\n" " 300*1000 /\n" "DZ\n" " 100*20 100*30 100*50 /\n" "\n" "TOPS\n" " 100*1234 /\n" "\n" "PORO\n" " 300*0.15 /\n" "PROPS\n" "\n"; constexpr const char* deckString2 = "RUNSPEC\n" "\n" "DIMENS\n" " 10 10 3 /\n" "\n" "TABDIMS\n" " * 1 /\n" "\n" "WATER\n" "GAS\n" "H2STORE\n" "\n" "DISGASW\n" "\n" "METRIC\n" "\n" "GRID\n" "\n" "DX\n" " 300*1000 /\n" "DY\n" " 300*1000 /\n" "DZ\n" " 100*20 100*30 100*50 /\n" "\n" "TOPS\n" " 100*1234 /\n" "\n" "PORO\n" " 300*0.15 /\n" "PROPS\n" "\n"; template void ensurePvtApiBrine(const BrinePvt& brinePvt) { // we don't want to run this, we just want to make sure that it compiles while (0) { Evaluation temperature = 273.15 + 20.0; Evaluation pressure = 1e5; Evaluation saltconcentration = 0.0; Evaluation rs = 0.0; //// // Water PVT API ///// std::cout << brinePvt.viscosity(/*regionIdx=*/0, temperature, pressure, rs, saltconcentration); std::cout << brinePvt.inverseFormationVolumeFactor(/*regionIdx=*/0, temperature, pressure, rs, saltconcentration); std::cout << brinePvt.internalEnergy(/*regionIdx=*/0, temperature, pressure, rs, saltconcentration); } } template void ensurePvtApiGas(const H2Pvt& h2Pvt) { // we don't want to run this, we just want to make sure that it compiles while (0) { Evaluation temperature = 273.15 + 20.0; Evaluation pressure = 1e5; Evaluation Rv = 0.0; Evaluation Rvw = 0.0; Evaluation So = 0.5; Evaluation maxSo = 1.0; ///// // H2 PVT API ///// std::cout << h2Pvt.viscosity(/*regionIdx=*/0, temperature, pressure, Rv, Rvw); std::cout << h2Pvt.inverseFormationVolumeFactor(/*regionIdx=*/0, temperature, pressure, Rv, Rvw); std::cout << h2Pvt.saturatedViscosity(/*regionIdx=*/0, temperature, pressure); std::cout << h2Pvt.saturatedInverseFormationVolumeFactor(/*regionIdx=*/0, temperature, pressure); std::cout << h2Pvt.saturationPressure(/*regionIdx=*/0, temperature, Rv); std::cout << h2Pvt.saturatedOilVaporizationFactor(/*regionIdx=*/0, temperature, pressure); std::cout << h2Pvt.saturatedOilVaporizationFactor(/*regionIdx=*/0, temperature, pressure, So, maxSo); } } template void ensurePvtApiBrineOil(const BrinePvt& brinePvt) { // we don't want to run this, we just want to make sure that it compiles while (0) { Evaluation temperature = 273.15 + 20.0; Evaluation pressure = 1e5; Evaluation Rs = 0.0; Evaluation So = 0.5; Evaluation maxSo = 1.0; ///// // brine PVT API ///// std::cout << brinePvt.viscosity(/*regionIdx=*/0, temperature, pressure, Rs); std::cout << brinePvt.inverseFormationVolumeFactor(/*regionIdx=*/0, temperature, pressure, Rs); std::cout << brinePvt.saturatedViscosity(/*regionIdx=*/0, temperature, pressure); std::cout << brinePvt.saturatedInverseFormationVolumeFactor(/*regionIdx=*/0, temperature, pressure); std::cout << brinePvt.saturationPressure(/*regionIdx=*/0, temperature, Rs); std::cout << brinePvt.saturatedGasDissolutionFactor(/*regionIdx=*/0, temperature, pressure); std::cout << brinePvt.saturatedGasDissolutionFactor(/*regionIdx=*/0, temperature, pressure, So, maxSo); } } using Types = boost::mpl::list; BOOST_AUTO_TEST_CASE_TEMPLATE(Oil, Scalar, Types) { Opm::Parser parser; auto python = std::make_shared(); auto deck1 = parser.parseString(deckString1); Opm::EclipseState eclState1(deck1); Opm::Schedule schedule1(deck1, eclState1, python); Opm::GasPvtMultiplexer h2Pvt_oil; Opm::OilPvtMultiplexer brinePvt_oil; BOOST_CHECK_NO_THROW(h2Pvt_oil.initFromState(eclState1, schedule1)); BOOST_CHECK_NO_THROW(brinePvt_oil.initFromState(eclState1, schedule1)); using Eval = Opm::DenseAd::Evaluation; ensurePvtApiGas(h2Pvt_oil); ensurePvtApiBrineOil(brinePvt_oil); } BOOST_AUTO_TEST_CASE_TEMPLATE(Water, Scalar, Types) { Opm::Parser parser; auto python = std::make_shared(); auto deck2 = parser.parseString(deckString2); Opm::EclipseState eclState2(deck2); Opm::Schedule schedule2(deck2, eclState2, python); Opm::GasPvtMultiplexer h2Pvt; Opm::WaterPvtMultiplexer brinePvt; BOOST_CHECK_NO_THROW(h2Pvt.initFromState(eclState2, schedule2)); BOOST_CHECK_NO_THROW(brinePvt.initFromState(eclState2, schedule2)); using Eval = Opm::DenseAd::Evaluation; ensurePvtApiGas(h2Pvt); ensurePvtApiBrine(brinePvt); }