/* Copyright 2018 Equinor ASA. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #define BOOST_TEST_MODULE MSIM_BASIC #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace Opm; namespace { double prod_opr(const EclipseState& es, const Schedule& /* sched */, const SummaryState&, const data::Solution& /* sol */, size_t /* report_step */, double seconds_elapsed) { const auto& units = es.getUnits(); return -units.to_si(UnitSystem::measure::rate, seconds_elapsed); } double prod_rft(const EclipseState& es, const Schedule& /* sched */, const SummaryState&, const data::Solution& /* sol */, size_t /* report_step */, double /* seconds_elapsed */) { const auto& units = es.getUnits(); return -units.to_si(UnitSystem::measure::rate, 0.0); } double inj_rft(const EclipseState& es, const Schedule& /* sched */, const SummaryState&, const data::Solution& /* sol */, size_t /* report_step */, double /* seconds_elapsed */) { const auto& units = es.getUnits(); return units.to_si(UnitSystem::measure::rate, 0.0); } void pressure(const EclipseState& es, const Schedule& /* sched */, data::Solution& sol, size_t /* report_step */, double seconds_elapsed) { const auto& grid = es.getInputGrid(); const auto& units = es.getUnits(); if (!sol.has("PRESSURE")) sol.insert("PRESSURE", UnitSystem::measure::pressure, std::vector(grid.getNumActive()), data::TargetType::RESTART_SOLUTION); auto& data = sol.data("PRESSURE"); std::fill(data.begin(), data.end(), units.to_si(UnitSystem::measure::pressure, seconds_elapsed)); } bool is_file(const Opm::filesystem::path& name) { return Opm::filesystem::exists(name) && Opm::filesystem::is_regular_file(name); } } BOOST_AUTO_TEST_CASE(RUN) { Parser parser; auto python = std::make_shared(); Deck deck = parser.parseFile("SPE1CASE1.DATA"); EclipseState state(deck); Schedule schedule(deck, state, python); SummaryConfig summary_config(deck, schedule, state.getTableManager(), state.aquifer()); msim msim(state); msim.well_rate("PROD", data::Rates::opt::oil, prod_opr); msim.well_rate("RFTP", data::Rates::opt::oil, prod_rft); msim.well_rate("RFTI", data::Rates::opt::wat, inj_rft); msim.solution("PRESSURE", pressure); { const WorkArea work_area("test_msim"); EclipseIO io(state, state.getInputGrid(), schedule, summary_config); msim.run(schedule, io, false); for (const auto& fname : {"SPE1CASE1.INIT", "SPE1CASE1.UNRST", "SPE1CASE1.EGRID", "SPE1CASE1.SMSPEC", "SPE1CASE1.UNSMRY", "SPE1CASE1.RSM"}) BOOST_CHECK( is_file( fname )); { const auto smry = EclIO::ESmry("SPE1CASE1"); const auto& time = smry.get("TIME"); const auto& press = smry.get("WOPR:PROD"); BOOST_CHECK( smry.hasKey("RPR__NUM:1")); for (auto nstep = time.size(), time_index=0*nstep; time_index < nstep; time_index++) { double seconds_elapsed = time[time_index] * 86400; BOOST_CHECK_CLOSE(seconds_elapsed, press[time_index], 1e-3); } const auto& fmwpa = smry.get("FMWPA"); const auto& fmwia = smry.get("FMWIA"); const auto& dates = smry.dates(); const auto& day = smry.get("DAY"); const auto& month = smry.get("MONTH"); const auto& year = smry.get("YEAR"); for (auto nstep = dates.size(), time_index=0*nstep; time_index < nstep; time_index++) { auto ts = TimeStampUTC( std::chrono::system_clock::to_time_t( dates[time_index]) ); BOOST_CHECK_EQUAL( ts.day(), day[time_index]); BOOST_CHECK_EQUAL( ts.month(), month[time_index]); BOOST_CHECK_EQUAL( ts.year(), year[time_index]); } BOOST_CHECK_EQUAL( fmwpa[0], 0.0 ); BOOST_CHECK_EQUAL( fmwia[0], 0.0 ); // The RFTP /RFTI wells will appear as an abondoned well. BOOST_CHECK_EQUAL( fmwpa[dates.size() - 1], 1.0 ); BOOST_CHECK_EQUAL( fmwia[dates.size() - 1], 1.0 ); const auto rsm = EclIO::ERsm("SPE1CASE1.RSM"); BOOST_CHECK( EclIO::cmp( smry, rsm )); } { auto rst = EclIO::ERst("SPE1CASE1.UNRST"); for (const auto& step : rst.listOfReportStepNumbers()) { const auto& dh = rst.getRst("DOUBHEAD", step, 0); const auto& press = rst.getRst("PRESSURE", step, 0); // DOUBHEAD[0] is elapsed time in days since start of simulation. BOOST_CHECK_CLOSE( press[0], dh[0] * 86400, 1e-3 ); } const int report_step = 50; const auto& rst_state = Opm::RestartIO::RstState::load(rst, report_step); Schedule sched_rst(deck, state, python, &rst_state); const auto& rfti_well = sched_rst.getWell("RFTI", report_step); const auto& rftp_well = sched_rst.getWell("RFTP", report_step); BOOST_CHECK(rftp_well.getStatus() == Well::Status::SHUT); BOOST_CHECK(rfti_well.getStatus() == Well::Status::SHUT); } } }