/*
Copyright 2018 Equinor ASA.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
*/
#define BOOST_TEST_MODULE MSIM_BASIC
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
using namespace Opm;
namespace {
double prod_opr(const EclipseState& es, const Schedule& /* sched */, const SummaryState&, const data::Solution& /* sol */, size_t /* report_step */, double seconds_elapsed) {
const auto& units = es.getUnits();
return -units.to_si(UnitSystem::measure::rate, seconds_elapsed);
}
double prod_rft(const EclipseState& es, const Schedule& /* sched */, const SummaryState&, const data::Solution& /* sol */, size_t /* report_step */, double /* seconds_elapsed */) {
const auto& units = es.getUnits();
return -units.to_si(UnitSystem::measure::rate, 0.0);
}
double inj_rft(const EclipseState& es, const Schedule& /* sched */, const SummaryState&, const data::Solution& /* sol */, size_t /* report_step */, double /* seconds_elapsed */) {
const auto& units = es.getUnits();
return units.to_si(UnitSystem::measure::rate, 0.0);
}
void pressure(const EclipseState& es, const Schedule& /* sched */, data::Solution& sol, size_t /* report_step */, double seconds_elapsed) {
const auto& grid = es.getInputGrid();
const auto& units = es.getUnits();
if (!sol.has("PRESSURE"))
sol.insert("PRESSURE", UnitSystem::measure::pressure, std::vector(grid.getNumActive()), data::TargetType::RESTART_SOLUTION);
auto& data = sol.data("PRESSURE");
std::fill(data.begin(), data.end(), units.to_si(UnitSystem::measure::pressure, seconds_elapsed));
}
bool is_file(const Opm::filesystem::path& name)
{
return Opm::filesystem::exists(name)
&& Opm::filesystem::is_regular_file(name);
}
}
BOOST_AUTO_TEST_CASE(RUN) {
Parser parser;
auto python = std::make_shared();
Deck deck = parser.parseFile("SPE1CASE1.DATA");
EclipseState state(deck);
Schedule schedule(deck, state, python);
SummaryConfig summary_config(deck, schedule, state.getTableManager(), state.aquifer());
msim msim(state);
msim.well_rate("PROD", data::Rates::opt::oil, prod_opr);
msim.well_rate("RFTP", data::Rates::opt::oil, prod_rft);
msim.well_rate("RFTI", data::Rates::opt::wat, inj_rft);
msim.solution("PRESSURE", pressure);
{
const WorkArea work_area("test_msim");
EclipseIO io(state, state.getInputGrid(), schedule, summary_config);
msim.run(schedule, io, false);
for (const auto& fname : {"SPE1CASE1.INIT", "SPE1CASE1.UNRST", "SPE1CASE1.EGRID", "SPE1CASE1.SMSPEC", "SPE1CASE1.UNSMRY", "SPE1CASE1.RSM"})
BOOST_CHECK( is_file( fname ));
{
const auto smry = EclIO::ESmry("SPE1CASE1");
const auto& time = smry.get("TIME");
const auto& press = smry.get("WOPR:PROD");
BOOST_CHECK( smry.hasKey("RPR__NUM:1"));
for (auto nstep = time.size(), time_index=0*nstep; time_index < nstep; time_index++) {
double seconds_elapsed = time[time_index] * 86400;
BOOST_CHECK_CLOSE(seconds_elapsed, press[time_index], 1e-3);
}
const auto& fmwpa = smry.get("FMWPA");
const auto& fmwia = smry.get("FMWIA");
const auto& dates = smry.dates();
const auto& day = smry.get("DAY");
const auto& month = smry.get("MONTH");
const auto& year = smry.get("YEAR");
for (auto nstep = dates.size(), time_index=0*nstep; time_index < nstep; time_index++) {
auto ts = TimeStampUTC( std::chrono::system_clock::to_time_t( dates[time_index]) );
BOOST_CHECK_EQUAL( ts.day(), day[time_index]);
BOOST_CHECK_EQUAL( ts.month(), month[time_index]);
BOOST_CHECK_EQUAL( ts.year(), year[time_index]);
}
BOOST_CHECK_EQUAL( fmwpa[0], 0.0 );
BOOST_CHECK_EQUAL( fmwia[0], 0.0 );
// The RFTP /RFTI wells will appear as an abondoned well.
BOOST_CHECK_EQUAL( fmwpa[dates.size() - 1], 1.0 );
BOOST_CHECK_EQUAL( fmwia[dates.size() - 1], 1.0 );
const auto rsm = EclIO::ERsm("SPE1CASE1.RSM");
BOOST_CHECK( EclIO::cmp( smry, rsm ));
}
{
auto rst = EclIO::ERst("SPE1CASE1.UNRST");
for (const auto& step : rst.listOfReportStepNumbers()) {
const auto& dh = rst.getRst("DOUBHEAD", step, 0);
const auto& press = rst.getRst("PRESSURE", step, 0);
// DOUBHEAD[0] is elapsed time in days since start of simulation.
BOOST_CHECK_CLOSE( press[0], dh[0] * 86400, 1e-3 );
}
const int report_step = 50;
const auto& rst_state = Opm::RestartIO::RstState::load(rst, report_step);
Schedule sched_rst(deck, state, python, &rst_state);
const auto& rfti_well = sched_rst.getWell("RFTI", report_step);
const auto& rftp_well = sched_rst.getWell("RFTP", report_step);
BOOST_CHECK(rftp_well.getStatus() == Well::Status::SHUT);
BOOST_CHECK(rfti_well.getStatus() == Well::Status::SHUT);
}
}
}