/* Copyright 2017 TNO. Copyright 2020 Equinor. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #define BOOST_TEST_MODULE AquiferCTTest #include #include #include #include #include #include using namespace Opm; EclipseGrid makeGrid() { EclipseGrid grid(3,3,3); std::vector actnum(27,1); actnum[0] = 0; actnum[9] = 0; actnum[18] = 0; grid.resetACTNUM(actnum); return grid; } inline Deck createAquiferCTDeck() { const char *deckData = "DIMENS\n" "3 3 3 /\n" "\n" "AQUDIMS\n" "1* 1* 2 100 1 1000 /\n" "GRID\n" "\n" "ACTNUM\n" " 0 8*1 0 8*1 0 8*1 /\n" "DXV\n" "1 1 1 /\n" "\n" "DYV\n" "1 1 1 /\n" "\n" "DZV\n" "1 1 1 /\n" "\n" "TOPS\n" "9*100 /\n" "\n" "PORO\n" " 27*0.15 /\n" "PROPS\n" "AQUTAB\n" " 0.01 0.112 \n" " 0.05 0.229 /\n" "SOLUTION\n" "\n" "AQUCT\n" " 1 2000.0 1.5 100 .3 3.0e-5 330 10 360.0 1 2 /\n" "/ \n"; Parser parser; return parser.parseString(deckData); } inline Deck createAquiferCTDeckDefaultP0() { const char *deckData = "DIMENS\n" "3 3 3 /\n" "\n" "AQUDIMS\n" "1* 1* 2 100 1 1000 /\n" "GRID\n" "\n" "ACTNUM\n" " 0 8*1 0 8*1 0 8*1 /\n" "DXV\n" "1 1 1 /\n" "\n" "DYV\n" "1 1 1 /\n" "\n" "DZV\n" "1 1 1 /\n" "\n" "TOPS\n" "9*100 /\n" "\n" "PORO\n" " 27*0.15 /\n" "PROPS\n" "AQUTAB\n" " 0.01 0.112 \n" " 0.05 0.229 /\n" "SOLUTION\n" "\n" "AQUCT\n" " 1 2000.0 1* 100 .3 3.0e-5 330 10 360.0 1 2 /\n" "/ \n"; Parser parser; return parser.parseString(deckData); } AquiferCT init_aquiferct(const Deck& deck){ EclipseState eclState( deck ); return AquiferCT(eclState.getTableManager(), deck); } BOOST_AUTO_TEST_CASE(AquiferCTTest){ auto deck = createAquiferCTDeck(); { auto aquiferct = init_aquiferct(deck); for (const auto& it : aquiferct){ BOOST_CHECK_EQUAL(it.aquiferID , 1); BOOST_CHECK_EQUAL(it.phi_aq , 0.3); BOOST_CHECK_EQUAL(it.inftableID , 2); BOOST_CHECK(it.p0.first == true); BOOST_CHECK_CLOSE(it.p0.second, 1.5e5, 1e-6); } BOOST_CHECK_EQUAL(aquiferct.size(), 1U); } auto deck_default_p0 = createAquiferCTDeckDefaultP0(); { auto aquiferct = init_aquiferct(deck_default_p0); for (const auto& it : aquiferct){ BOOST_CHECK_EQUAL(it.aquiferID , 1); BOOST_CHECK_EQUAL(it.phi_aq , 0.3); BOOST_CHECK_EQUAL(it.inftableID , 2); BOOST_CHECK(it.p0.first == false); } auto data = aquiferct.data(); AquiferCT aq2(data); BOOST_CHECK( aq2 == aquiferct ); } } inline Deck createAQUANCONDeck_DEFAULT_INFLUX2() { const char *deckData = "DIMENS\n" "3 3 3 /\n" "\n" "GRID\n" "\n" "ACTNUM\n" " 0 8*1 0 8*1 0 8*1 /\n" "DXV\n" "1 1 1 /\n" "\n" "DYV\n" "1 1 1 /\n" "\n" "DZV\n" "1 1 1 /\n" "\n" "TOPS\n" "9*100 /\n" "\n" "PORO\n" " 27*0.15 /\n" "SOLUTION\n" "\n" "AQUANCON\n" " 1 2 2 1 1 1 1 J- 1.0 /\n" " 1 2 2 1 1 1 1 J- /\n" "/ \n"; Parser parser; return parser.parseString(deckData); } inline Deck createAQUANCONDeck_DEFAULT_INFLUX1() { const char *deckData = "DIMENS\n" "3 3 3 /\n" "\n" "GRID\n" "\n" "ACTNUM\n" " 0 8*1 0 8*1 0 8*1 /\n" "DXV\n" "1 1 1 /\n" "\n" "DYV\n" "1 1 1 /\n" "\n" "DZV\n" "1 1 1 /\n" "\n" "TOPS\n" "9*100 /\n" "PORO\n" " 27*0.15 /\n" "\n" "SOLUTION\n" "\n" "AQUANCON\n" " 1 1 3 1 1 1 1 J- /\n" "/\n" "AQUANCON\n" " 2 1 1 2 2 1 1 J- /\n" "/ \n"; Parser parser; return parser.parseString(deckData); } inline Deck createAQUANCONDeck_DEFAULT_ILLEGAL() { const char *deckData = "DIMENS\n" "3 3 3 /\n" "\n" "GRID\n" "\n" "ACTNUM\n" " 0 8*1 0 8*1 0 8*1 /\n" "DXV\n" "1 1 1 /\n" "\n" "DYV\n" "1 1 1 /\n" "\n" "DZV\n" "1 1 1 /\n" "\n" "TOPS\n" "9*100 /\n" "PORO\n" " 27*0.15 /\n" "\n" "SOLUTION\n" "\n" "AQUANCON\n" " 1 1 3 1 1 1 1 J- /\n" "/\n" "AQUANCON\n" " 2 1 2 1 2 1 1 J- /\n" "/ \n"; Parser parser; return parser.parseString(deckData); } inline Deck createAQUANCONDeck() { const char *deckData = "DIMENS\n" "3 3 3 /\n" "\n" "GRID\n" "\n" "ACTNUM\n" " 0 8*1 0 8*1 0 8*1 /\n" "DXV\n" "1 1 1 /\n" "\n" "DYV\n" "1 1 1 /\n" "\n" "DZV\n" "1 1 1 /\n" "\n" "TOPS\n" "9*100 /\n" "\n" "PORO\n" " 27*0.15 /\n" "SOLUTION\n" "\n" "AQUANCON\n" " 1 1 1 1 1 1 1 J- 1.0 1.0 NO /\n" " 1 1 3 1 3 3 3 I+ 0.5 1.0 NO /\n" " 1 1 3 1 3 3 3 J+ 0.75 1.0 NO /\n" " 1 1 3 1 3 3 3 J- 2.75 1.0 NO /\n" " 1 2 3 2 3 1 1 I+ 2.75 1.0 NO /\n" "/ \n"; Parser parser; return parser.parseString(deckData); } BOOST_AUTO_TEST_CASE(AquanconTest_DEFAULT_INFLUX) { auto deck1 = createAQUANCONDeck_DEFAULT_INFLUX1(); const auto& grid = makeGrid(); Aquancon aqcon(grid, deck1); const auto& cells_aq1 = aqcon[1]; /* The cells I = 0..2 are connected to aquifer 1; cell I==0 is inactive and not counted here ==> a total of 2 cells are connected to aquifer 1. */ BOOST_CHECK_EQUAL(cells_aq1.size(), 2U); const auto& cells_aq2 = aqcon[2]; BOOST_CHECK_EQUAL(cells_aq2.size(), 1U); BOOST_CHECK(aqcon.active()); auto deck2 = createAQUANCONDeck_DEFAULT_INFLUX2(); BOOST_CHECK_THROW(Aquancon( grid, deck2), std::invalid_argument); // The cell (2,1,1) is attached to both aquifer 1 and aquifer 2 - that is illegal. auto deck3 = createAQUANCONDeck_DEFAULT_ILLEGAL(); BOOST_CHECK_THROW(Aquancon( grid, deck3), std::invalid_argument); } // allowing aquifer exists inside the reservoir inline Deck createAQUANCONDeck_ALLOW_INSIDE_AQUAN_OR_NOT() { const char *deckData = "DIMENS\n" "3 3 3 /\n" "\n" "GRID\n" "\n" "ACTNUM\n" " 0 8*1 0 8*1 0 8*1 /\n" "DXV\n" "1 1 1 /\n" "\n" "DYV\n" "1 1 1 /\n" "\n" "DZV\n" "1 1 1 /\n" "\n" "TOPS\n" "9*100 /\n" "\n" "PORO\n" " 27*0.15 /\n" "SOLUTION\n" "\n" "AQUFETP\n" " 1 20.0 1000.0 2000. 0.000001 200.0 /\n" " 2 20.0 1000.0 2000. 0.000001 200.0 /\n" "/\n" "AQUANCON\n" " 1 1 1 1 1 1 1 J- 2* YES /\n" " 1 2 2 1 1 1 1 J- 2* YES /\n" " 1 2 2 2 2 1 1 J- 2* YES /\n" " 2 1 1 1 1 3 3 J- 2* NO /\n" " 2 2 2 1 1 3 3 J- 2* NO /\n" " 2 2 2 2 2 3 3 J- 2* NO /\n" "/ \n"; Parser parser; return parser.parseString(deckData); } BOOST_AUTO_TEST_CASE(AquanconTest_ALLOW_AQUIFER_INSIDE_OR_NOT) { auto deck = createAQUANCONDeck_ALLOW_INSIDE_AQUAN_OR_NOT(); const EclipseState eclState( deck ); const Aquancon aqucon( eclState.getInputGrid(), deck); const auto& data = aqucon.data(); const Aquancon aq2(data); BOOST_CHECK(aqucon == aq2); auto cells1 = aqucon[1]; auto cells2 = aqucon[2]; BOOST_CHECK_EQUAL(cells1.size() , 2U); BOOST_CHECK_EQUAL(cells2.size() , 1U); } inline Deck createAquifetpDeck() { const char *deckData = "DIMENS\n" "3 3 3 /\n" "\n" "AQUDIMS\n" "1* 1* 2 100 1 1000 /\n" "GRID\n" "\n" "ACTNUM\n" " 0 8*1 0 8*1 0 8*1 /\n" "DXV\n" "1 1 1 /\n" "\n" "DYV\n" "1 1 1 /\n" "\n" "DZV\n" "1 1 1 /\n" "\n" "TOPS\n" "9*100 /\n" "\n" "PROPS\n" "AQUTAB\n" " 0.01 0.112 \n" " 0.05 0.229 /\n" "SOLUTION\n" "\n" "AQUFETP\n" "1 70000.0 4.0e3 2.0e9 1.0e-5 500 1 0 0 /\n" "/\n"; Parser parser; return parser.parseString(deckData); } inline Deck createNullAquifetpDeck(){ const char *deckData = "DIMENS\n" "3 3 3 /\n" "\n" "AQUDIMS\n" "1* 1* 2 100 1 1000 /\n" "GRID\n" "\n" "ACTNUM\n" " 0 8*1 0 8*1 0 8*1 /\n" "DXV\n" "1 1 1 /\n" "\n" "DYV\n" "1 1 1 /\n" "\n" "DZV\n" "1 1 1 /\n" "\n" "TOPS\n" "9*100 /\n" "\n" "PROPS\n" "AQUTAB\n" " 0.01 0.112 \n" " 0.05 0.229 /\n" "SOLUTION\n" ; Parser parser; return parser.parseString(deckData); } inline Deck createAquifetpDeck_defaultPressure(){ const char *deckData = "DIMENS\n" "3 3 3 /\n" "\n" "AQUDIMS\n" "1* 1* 2 100 1 1000 /\n" "GRID\n" "\n" "ACTNUM\n" " 0 8*1 0 8*1 0 8*1 /\n" "DXV\n" "1 1 1 /\n" "\n" "DYV\n" "1 1 1 /\n" "\n" "DZV\n" "1 1 1 /\n" "\n" "TOPS\n" "9*100 /\n" "\n" "PROPS\n" "AQUTAB\n" " 0.01 0.112 \n" " 0.05 0.229 /\n" "SOLUTION\n" "\n" "AQUFETP\n" "1 70000.0 1* 2.0e9 1.0e-5 500 1 0 0 /\n" "/\n"; Parser parser; return parser.parseString(deckData); } inline Aquifetp init_aquifetp(Deck& deck){ Aquifetp aqufetp(deck); return aqufetp; } BOOST_AUTO_TEST_CASE(AquifetpTest){ auto aqufetp_deck = createAquifetpDeck(); const auto& aquifetp = init_aquifetp(aqufetp_deck); for (const auto& it : aquifetp){ BOOST_CHECK_EQUAL(it.aquiferID , 1); BOOST_CHECK_EQUAL(it.V0, 2.0e9); BOOST_CHECK_EQUAL(it.J, 500/86400e5); BOOST_CHECK( it.p0.first ); } const auto& data = aquifetp.data(); Aquifetp aq2(data); BOOST_CHECK(aq2 == aquifetp); auto aqufetp_deck_null = createNullAquifetpDeck(); const auto& aquifetp_null = init_aquifetp(aqufetp_deck_null); BOOST_CHECK_EQUAL(aquifetp_null.size(), 0U); auto aqufetp_deck_default = createAquifetpDeck_defaultPressure(); const auto& aquifetp_default = init_aquifetp(aqufetp_deck_default); for (const auto& it : aquifetp_default){ BOOST_CHECK_EQUAL(it.aquiferID , 1); BOOST_CHECK_EQUAL(it.V0, 2.0e9); BOOST_CHECK_EQUAL(it.J, 500/86400e5); BOOST_CHECK( !it.p0.first ); } } BOOST_AUTO_TEST_CASE(TEST_CREATE) { Opm::Aqudims aqudims; BOOST_CHECK_EQUAL( aqudims.getNumAqunum() , 1U ); BOOST_CHECK_EQUAL( aqudims.getNumConnectionNumericalAquifer() , 1U ); BOOST_CHECK_EQUAL( aqudims.getNumInfluenceTablesCT() , 1U ); BOOST_CHECK_EQUAL( aqudims.getNumRowsInfluenceTable() , 36U ); BOOST_CHECK_EQUAL( aqudims.getNumAnalyticAquifers() , 1U ); BOOST_CHECK_EQUAL( aqudims.getNumRowsAquancon() , 1U ); BOOST_CHECK_EQUAL( aqudims.getNumAquiferLists() , 0U ); BOOST_CHECK_EQUAL( aqudims.getNumAnalyticAquifersSingleList() , 0U ); } BOOST_AUTO_TEST_CASE(Test_Aquifer_Config) { const std::string deck_string = R"( DIMENS 3 3 3 / )"; Opm::Parser parser; Opm::Deck deck = parser.parseString(deck_string); Opm::TableManager tables; Opm::EclipseGrid grid(10,10,10); Opm::AquiferConfig conf(tables, grid, deck); BOOST_CHECK(!conf.active()); const auto& fetp = conf.fetp(); const auto& ct = conf.ct(); const auto& conn = conf.connections(); Opm::AquiferConfig conf2(fetp, ct, conn); BOOST_CHECK( conf == conf2 ); }