// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- // vi: set et ts=4 sw=4 sts=4: /* Copyright (C) 2011-2013 by Andreas Lauser This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ /*! * \file * * \brief This is a program to test the flash calculation which uses * non-linear complementarity problems (NCP) * * A flash calculation determines the pressures, saturations and * composition of all phases given the total mass (or, as in this case * the total number of moles) in a given amount of pore space. */ #include "config.h" #include #include #include #include #include #include #include #include #include template void checkSame(const FluidState &fsRef, const FluidState &fsFlash) { enum { numPhases = FluidState::numPhases }; enum { numComponents = FluidState::numComponents }; for (int phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) { Scalar error; // check the pressures error = 1 - fsRef.pressure(phaseIdx)/fsFlash.pressure(phaseIdx); if (std::abs(error) > 1e-6) { std::cout << "pressure error phase " << phaseIdx << ": " << fsFlash.pressure(phaseIdx) << " flash vs " << fsRef.pressure(phaseIdx) << " reference" << " error=" << error << "\n"; } // check the saturations error = fsRef.saturation(phaseIdx) - fsFlash.saturation(phaseIdx); if (std::abs(error) > 1e-6) std::cout << "saturation error phase " << phaseIdx << ": " << fsFlash.saturation(phaseIdx) << " flash vs " << fsRef.saturation(phaseIdx) << " reference" << " error=" << error << "\n"; // check the compositions for (int compIdx = 0; compIdx < numComponents; ++ compIdx) { error = fsRef.moleFraction(phaseIdx, compIdx) - fsFlash.moleFraction(phaseIdx, compIdx); if (std::abs(error) > 1e-6) std::cout << "composition error phase " << phaseIdx << ", component " << compIdx << ": " << fsFlash.moleFraction(phaseIdx, compIdx) << " flash vs " << fsRef.moleFraction(phaseIdx, compIdx) << " reference" << " error=" << error << "\n"; } } } template void checkImmiscibleFlash(const FluidState &fsRef, typename MaterialLaw::Params &matParams) { enum { numPhases = FluidSystem::numPhases }; enum { numComponents = FluidSystem::numComponents }; typedef Dune::FieldVector ComponentVector; // calculate the total amount of stuff in the reference fluid // phase ComponentVector globalMolarities(0.0); for (int compIdx = 0; compIdx < numComponents; ++compIdx) { for (int phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) { globalMolarities[compIdx] += fsRef.saturation(phaseIdx)*fsRef.molarity(phaseIdx, compIdx); } } // initialize the fluid state for the flash calculation typedef Opm::ImmiscibleFlash ImmiscibleFlash; FluidState fsFlash; fsFlash.setTemperature(fsRef.temperature(/*phaseIdx=*/0)); // run the flash calculation typename FluidSystem::ParameterCache paramCache; ImmiscibleFlash::guessInitial(fsFlash, paramCache, globalMolarities); ImmiscibleFlash::template solve(fsFlash, paramCache, matParams, globalMolarities); // compare the "flashed" fluid state with the reference one checkSame(fsRef, fsFlash); } template void completeReferenceFluidState(FluidState &fs, typename MaterialLaw::Params &matParams, int refPhaseIdx) { enum { numPhases = FluidSystem::numPhases }; typedef Dune::FieldVector PhaseVector; int otherPhaseIdx = 1 - refPhaseIdx; // calculate the other saturation fs.setSaturation(otherPhaseIdx, 1.0 - fs.saturation(refPhaseIdx)); // calulate the capillary pressure PhaseVector pC; MaterialLaw::capillaryPressures(pC, matParams, fs); fs.setPressure(otherPhaseIdx, fs.pressure(refPhaseIdx) + (pC[otherPhaseIdx] - pC[refPhaseIdx])); // set all phase densities typename FluidSystem::ParameterCache paramCache; paramCache.updateAll(fs); for (int phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) { Scalar rho = FluidSystem::density(fs, paramCache, phaseIdx); fs.setDensity(phaseIdx, rho); } } int main() { typedef double Scalar; typedef Opm::FluidSystems::H2ON2 FluidSystem; typedef Opm::ImmiscibleFluidState ImmiscibleFluidState; enum { numPhases = FluidSystem::numPhases }; enum { numComponents = FluidSystem::numComponents }; enum { liquidPhaseIdx = FluidSystem::liquidPhaseIdx }; enum { gasPhaseIdx = FluidSystem::gasPhaseIdx }; enum { H2OIdx = FluidSystem::H2OIdx }; enum { N2Idx = FluidSystem::N2Idx }; typedef Opm::TwoPhaseMaterialTraits MaterialLawTraits; typedef Opm::RegularizedBrooksCorey EffMaterialLaw; typedef Opm::EffToAbsLaw MaterialLaw; typedef MaterialLaw::Params MaterialLawParams; Scalar T = 273.15 + 25; // initialize the tables of the fluid system Scalar Tmin = T - 1.0; Scalar Tmax = T + 1.0; int nT = 3; Scalar pmin = 0.0; Scalar pmax = 1.25 * 2e6; int np = 100; FluidSystem::init(Tmin, Tmax, nT, pmin, pmax, np); // set the parameters for the capillary pressure law MaterialLawParams matParams; matParams.setResidualSaturation(MaterialLaw::wettingPhaseIdx, 0.0); matParams.setResidualSaturation(MaterialLaw::nonWettingPhaseIdx, 0.0); matParams.setEntryPressure(0); matParams.setLambda(2.0); matParams.finalize(); ImmiscibleFluidState fsRef; // create an fluid state which is consistent // set the fluid temperatures fsRef.setTemperature(T); //////////////// // only liquid //////////////// std::cout << "testing single-phase liquid\n"; // set liquid saturation and pressure fsRef.setSaturation(liquidPhaseIdx, 1.0); fsRef.setPressure(liquidPhaseIdx, 1e6); // set the remaining parameters of the reference fluid state completeReferenceFluidState(fsRef, matParams, liquidPhaseIdx); // check the flash calculation checkImmiscibleFlash(fsRef, matParams); //////////////// // only gas //////////////// std::cout << "testing single-phase gas\n"; // set gas saturation and pressure fsRef.setSaturation(gasPhaseIdx, 1.0); fsRef.setPressure(gasPhaseIdx, 1e6); // set the remaining parameters of the reference fluid state completeReferenceFluidState(fsRef, matParams, gasPhaseIdx); // check the flash calculation checkImmiscibleFlash(fsRef, matParams); //////////////// // both phases //////////////// std::cout << "testing two-phase\n"; // set liquid saturation and pressure fsRef.setSaturation(liquidPhaseIdx, 0.5); fsRef.setPressure(liquidPhaseIdx, 1e6); // set the remaining parameters of the reference fluid state completeReferenceFluidState(fsRef, matParams, liquidPhaseIdx); // check the flash calculation checkImmiscibleFlash(fsRef, matParams); //////////////// // with capillary pressure //////////////// std::cout << "testing two-phase with capillary pressure\n"; MaterialLawParams matParams2; matParams2.setResidualSaturation(MaterialLaw::wettingPhaseIdx, 0.0); matParams2.setResidualSaturation(MaterialLaw::nonWettingPhaseIdx, 0.0); matParams2.setEntryPressure(1e3); matParams2.setLambda(2.0); matParams2.finalize(); // set liquid saturation fsRef.setSaturation(liquidPhaseIdx, 0.5); // set pressure of the liquid phase fsRef.setPressure(liquidPhaseIdx, 1e6); // set the remaining parameters of the reference fluid state completeReferenceFluidState(fsRef, matParams2, liquidPhaseIdx); // check the flash calculation checkImmiscibleFlash(fsRef, matParams2); return 0; }