opm-common/opm/material/fluidmatrixinteractions/PiecewiseLinearTwoPhaseMaterialParams.hpp
Arne Morten Kvarving 85f5d23966 PiecewiseLinearTwoPhaseMaterial(Params): some modernization
- typedef -> using
- use constexpr where appropriate
- fix includes
2022-08-03 10:21:52 +02:00

205 lines
6.3 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
* \copydoc Opm::PiecewiseLinearTwoPhaseMaterialParams
*/
#ifndef OPM_PIECEWISE_LINEAR_TWO_PHASE_MATERIAL_PARAMS_HPP
#define OPM_PIECEWISE_LINEAR_TWO_PHASE_MATERIAL_PARAMS_HPP
#include <algorithm>
#include <cassert>
#include <vector>
#include <opm/material/common/EnsureFinalized.hpp>
namespace Opm {
/*!
* \ingroup FluidMatrixInteractions
*
* \brief Specification of the material parameters for a two-phase material law which
* uses a table and piecewise constant interpolation.
*/
template<class TraitsT>
class PiecewiseLinearTwoPhaseMaterialParams : public EnsureFinalized
{
using Scalar = typename TraitsT::Scalar;
public:
using ValueVector = std::vector<Scalar>;
using Traits = TraitsT;
PiecewiseLinearTwoPhaseMaterialParams()
{
}
/*!
* \brief Calculate all dependent quantities once the independent
* quantities of the parameter object have been set.
*/
void finalize()
{
EnsureFinalized :: finalize ();
// revert the order of the sampling points if they were given
// in reverse direction.
if (SwPcwnSamples_.front() > SwPcwnSamples_.back())
swapOrder_(SwPcwnSamples_, pcwnSamples_);
if (SwKrwSamples_.front() > SwKrwSamples_.back())
swapOrder_(SwKrwSamples_, krwSamples_);
if (SwKrnSamples_.front() > SwKrnSamples_.back())
swapOrder_(SwKrnSamples_, krnSamples_);
}
/*!
* \brief Return the wetting-phase saturation values of all sampling points.
*/
const ValueVector& SwKrwSamples() const
{ EnsureFinalized::check(); return SwKrwSamples_; }
/*!
* \brief Return the wetting-phase saturation values of all sampling points.
*/
const ValueVector& SwKrnSamples() const
{ EnsureFinalized::check(); return SwKrnSamples_; }
/*!
* \brief Return the wetting-phase saturation values of all sampling points.
*/
const ValueVector& SwPcwnSamples() const
{ EnsureFinalized::check(); return SwPcwnSamples_; }
/*!
* \brief Return the sampling points for the capillary pressure curve.
*
* This curve is assumed to depend on the wetting phase saturation
*/
const ValueVector& pcnwSamples() const
{ EnsureFinalized::check(); return pcwnSamples_; }
/*!
* \brief Set the sampling points for the capillary pressure curve.
*
* This curve is assumed to depend on the wetting phase saturation
*/
template <class Container>
void setPcnwSamples(const Container& SwValues, const Container& values)
{
assert(SwValues.size() == values.size());
size_t n = SwValues.size();
SwPcwnSamples_.resize(n);
pcwnSamples_.resize(n);
std::copy(SwValues.begin(), SwValues.end(), SwPcwnSamples_.begin());
std::copy(values.begin(), values.end(), pcwnSamples_.begin());
}
/*!
* \brief Return the sampling points for the relative permeability
* curve of the wetting phase.
*
* This curve is assumed to depend on the wetting phase saturation
*/
const ValueVector& krwSamples() const
{ EnsureFinalized::check(); return krwSamples_; }
/*!
* \brief Set the sampling points for the relative permeability
* curve of the wetting phase.
*
* This curve is assumed to depend on the wetting phase saturation
*/
template <class Container>
void setKrwSamples(const Container& SwValues, const Container& values)
{
assert(SwValues.size() == values.size());
size_t n = SwValues.size();
SwKrwSamples_.resize(n);
krwSamples_.resize(n);
std::copy(SwValues.begin(), SwValues.end(), SwKrwSamples_.begin());
std::copy(values.begin(), values.end(), krwSamples_.begin());
}
/*!
* \brief Return the sampling points for the relative permeability
* curve of the non-wetting phase.
*
* This curve is assumed to depend on the wetting phase saturation
*/
const ValueVector& krnSamples() const
{ EnsureFinalized::check(); return krnSamples_; }
/*!
* \brief Set the sampling points for the relative permeability
* curve of the non-wetting phase.
*
* This curve is assumed to depend on the wetting phase saturation
*/
template <class Container>
void setKrnSamples(const Container& SwValues, const Container& values)
{
assert(SwValues.size() == values.size());
size_t n = SwValues.size();
SwKrnSamples_.resize(n);
krnSamples_.resize(n);
std::copy(SwValues.begin(), SwValues.end(), SwKrnSamples_.begin());
std::copy(values.begin(), values.end(), krnSamples_.begin());
}
private:
void swapOrder_(ValueVector& swValues, ValueVector& values) const
{
if (swValues.front() > values.back()) {
for (unsigned origSampleIdx = 0;
origSampleIdx < swValues.size() / 2;
++ origSampleIdx)
{
size_t newSampleIdx = swValues.size() - origSampleIdx - 1;
std::swap(swValues[origSampleIdx], swValues[newSampleIdx]);
std::swap(values[origSampleIdx], values[newSampleIdx]);
}
}
}
ValueVector SwPcwnSamples_;
ValueVector SwKrwSamples_;
ValueVector SwKrnSamples_;
ValueVector pcwnSamples_;
ValueVector krwSamples_;
ValueVector krnSamples_;
};
} // namespace Opm
#endif