opm-common/tests/TEST_AGGREGATE_MSW.DATA

494 lines
12 KiB
Plaintext

-- This reservoir simulation deck is made available under the Open Database
-- License: http://opendatacommons.org/licenses/odbl/1.0/. Any rights in
-- individual contents of the database are licensed under the Database Contents
-- License: http://opendatacommons.org/licenses/dbcl/1.0/
-- Copyright (C) 2015 Statoil
-- This simulation is based on the data given in
-- 'Comparison of Solutions to a Three-Dimensional
-- Black-Oil Reservoir Simulation Problem' by Aziz S. Odeh,
-- Journal of Petroleum Technology, January 1981
---------------------------------------------------------------------------
------------------------ SPE1 - CASE 1 ------------------------------------
---------------------------------------------------------------------------
RUNSPEC
-- -------------------------------------------------------------------------
TITLE
SPE1 - CASE 1
DIMENS
10 5 10 /
-- The number of equilibration regions is inferred from the EQLDIMS
-- keyword.
EQLDIMS
/
-- The number of PVTW tables is inferred from the TABDIMS keyword;
-- when no data is included in the keyword the default values are used.
TABDIMS
/
OIL
GAS
WATER
DISGAS
-- As seen from figure 4 in Odeh, GOR is increasing with time,
-- which means that dissolved gas is present
FIELD
START
1 'JAN' 2015 /
WELLDIMS
-- Item 1: maximum number of wells in the model
-- - there are two wells in the problem; injector and producer
-- Item 2: maximum number of grid blocks connected to any one well
-- - must be one as the wells are located at specific grid blocks
-- Item 3: maximum number of groups in the model
-- - we are dealing with only one 'group'
-- Item 4: maximum number of wells in any one group
-- - there must be two wells in a group as there are two wells in total
3 20 1 3 /
WSEGDIMS
2 32 5 /
UNIFIN
UNIFOUT
START
1 'JAN' 2015 /
GRID
-- The INIT keyword is used to request an .INIT file. The .INIT file
-- is written before the simulation actually starts, and contains grid
-- properties and saturation tables as inferred from the input
-- deck. There are no other keywords which can be used to configure
-- exactly what is written to the .INIT file.
INIT
-- -------------------------------------------------------------------------
--NOECHO
BOX
1 10 1 5 1 1 /
TOPS
50*7000 /
BOX
1 10 1 5 1 10 /
DXV
10*100 /
DYV
5*100 /
DZ
100*20
50*100
350*20
/
EQUALS
-- 'DX' 100 /
-- 'DY' 100 /
'PERMX' 500 /
'PERMZ' 50 /
-- 'DZ' 20 /
'PORO' 0.2 /
-- 'TOPS' 7000 1 10 1 5 1 1 /
-- 'DZ' 100 1 10 1 5 3 3 /
-- 'PORO' 0.0 1 10 1 5 3 3 /
/
COPY
PERMX PERMY /
/
ECHO
PROPS
-- -------------------------------------------------------------------------
PVTW
-- Item 1: pressure reference (psia)
-- Item 2: water FVF (rb per bbl or rb per stb)
-- Item 3: water compressibility (psi^{-1})
-- Item 4: water viscosity (cp)
-- Item 5: water 'viscosibility' (psi^{-1})
-- Using values from Norne:
-- In METRIC units:
-- 277.0 1.038 4.67E-5 0.318 0.0 /
-- In FIELD units:
4017.55 1.038 3.22E-6 0.318 0.0 /
ROCK
-- Item 1: reference pressure (psia)
-- Item 2: rock compressibility (psi^{-1})
-- Using values from table 1 in Odeh:
14.7 3E-6 /
SWOF
-- Column 1: water saturation
-- - this has been set to (almost) equally spaced values from 0.12 to 1
-- Column 2: water relative permeability
-- - generated from the Corey-type approx. formula
-- the coeffisient is set to 10e-5, S_{orw}=0 and S_{wi}=0.12
-- Column 3: oil relative permeability when only oil and water are present
-- - we will use the same values as in column 3 in SGOF.
-- This is not really correct, but since only the first
-- two values are of importance, this does not really matter
-- Column 4: water-oil capillary pressure (psi)
0.12 0 1 0
0.18 4.64876033057851E-008 1 0
0.24 0.000000186 0.997 0
0.3 4.18388429752066E-007 0.98 0
0.36 7.43801652892562E-007 0.7 0
0.42 1.16219008264463E-006 0.35 0
0.48 1.67355371900826E-006 0.2 0
0.54 2.27789256198347E-006 0.09 0
0.6 2.97520661157025E-006 0.021 0
0.66 3.7654958677686E-006 0.01 0
0.72 4.64876033057851E-006 0.001 0
0.78 0.000005625 0.0001 0
0.84 6.69421487603306E-006 0 0
0.91 8.05914256198347E-006 0 0
1 0.00001 0 0 /
SGOF
-- Column 1: gas saturation
-- Column 2: gas relative permeability
-- Column 3: oil relative permeability when oil, gas and connate water are present
-- Column 4: oil-gas capillary pressure (psi)
-- - stated to be zero in Odeh's paper
-- Values in column 1-3 are taken from table 3 in Odeh's paper:
0 0 1 0
0.001 0 1 0
0.02 0 0.997 0
0.05 0.005 0.980 0
0.12 0.025 0.700 0
0.2 0.075 0.350 0
0.25 0.125 0.200 0
0.3 0.190 0.090 0
0.4 0.410 0.021 0
0.45 0.60 0.010 0
0.5 0.72 0.001 0
0.6 0.87 0.0001 0
0.7 0.94 0.000 0
0.85 0.98 0.000 0
0.88 0.984 0.000 0 /
--1.00 1.0 0.000 0 /
-- Warning from Eclipse: first sat. value in SWOF + last sat. value in SGOF
-- must not be greater than 1, but Eclipse still runs
-- Flow needs the sum to be excactly 1 so I added a row with gas sat. = 0.88
-- The corresponding krg value was estimated by assuming linear rel. between
-- gas sat. and krw. between gas sat. 0.85 and 1.00 (the last two values given)
DENSITY
-- Density (lb per ft³) at surface cond. of
-- oil, water and gas, respectively (in that order)
-- Using values from Norne:
-- In METRIC units:
-- 859.5 1033.0 0.854 /
-- In FIELD units:
53.66 64.49 0.0533 /
PVDG
-- Column 1: gas phase pressure (psia)
-- Column 2: gas formation volume factor (rb per Mscf)
-- - in Odeh's paper the units are said to be given in rb per bbl,
-- but this is assumed to be a mistake: FVF-values in Odeh's paper
-- are given in rb per scf, not rb per bbl. This will be in
-- agreement with conventions
-- Column 3: gas viscosity (cP)
-- Using values from lower right table in Odeh's table 2:
14.700 166.666 0.008000
264.70 12.0930 0.009600
514.70 6.27400 0.011200
1014.7 3.19700 0.014000
2014.7 1.61400 0.018900
2514.7 1.29400 0.020800
3014.7 1.08000 0.022800
4014.7 0.81100 0.026800
5014.7 0.64900 0.030900
9014.7 0.38600 0.047000 /
PVTO
-- Column 1: dissolved gas-oil ratio (Mscf per stb)
-- Column 2: bubble point pressure (psia)
-- Column 3: oil FVF for saturated oil (rb per stb)
-- Column 4: oil viscosity for saturated oil (cP)
-- Use values from top left table in Odeh's table 2:
0.00100 14.7 1.0620 1.0400 /
0.09050 264.7 1.1500 0.9750 /
0.18000 514.7 1.2070 0.9100 /
0.37100 1014.7 1.2950 0.8300 /
0.63600 2014.7 1.4350 0.6950 /
0.77500 2514.7 1.5000 0.6410 /
0.93000 3014.7 1.5650 0.5940 /
1.27000 4014.7 1.6950 0.5100
5014.7 1.6710 0.5490
9014.7 1.5790 0.7400 /
1.61800 5014.7 1.8270 0.4490
9014.7 1.7260 0.6050 /
2.00000 8014.7 1.9500 0.3000
9014.7 1.8500 0.5500 /
/
-- It is required to enter data for undersaturated oil for the highest GOR
-- (i.e. the last row) in the PVTO table.
-- In order to fulfill this requirement, values for oil FVF and viscosity
-- at 9014.7psia and GOR=1.618 for undersaturated oil have been approximated:
-- It has been assumed that there is a linear relation between the GOR
-- and the FVF when keeping the pressure constant at 9014.7psia.
-- From Odeh we know that (at 9014.7psia) the FVF is 2.357 at GOR=2.984
-- for saturated oil and that the FVF is 1.579 at GOR=1.27 for undersaturated oil,
-- so it is possible to use the assumption described above.
-- An equivalent approximation for the viscosity has been used.
SOLUTION
-- -------------------------------------------------------------------------
EQUIL
-- Item 1: datum depth (ft)
-- Item 2: pressure at datum depth (psia)
-- - Odeh's table 1 says that initial reservoir pressure is
-- 4800 psi at 8400ft, which explains choice of item 1 and 2
-- Item 3: depth of water-oil contact (ft)
-- - chosen to be directly under the reservoir
-- Item 4: oil-water capillary pressure at the water oil contact (psi)
-- - given to be 0 in Odeh's paper
-- Item 5: depth of gas-oil contact (ft)
-- - chosen to be directly above the reservoir
-- Item 6: gas-oil capillary pressure at gas-oil contact (psi)
-- - given to be 0 in Odeh's paper
-- Item 7: RSVD-table
-- Item 8: RVVD-table
-- Item 9: Set to 0 as this is the only value supported by OPM
-- Item #: 1 2 3 4 5 6 7 8 9
7200 4800 7300 0 7000 0 1 0 0 /
RSVD
-- Dissolved GOR is initially constant with depth through the reservoir.
-- The reason is that the initial reservoir pressure given is higher
---than the bubble point presssure of 4014.7psia, meaning that there is no
-- free gas initially present.
7000 1.270
8000 1.270 /
SUMMARY
-- -------------------------------------------------------------------------
-- 1a) Oil rate vs time
FOPR
-- Field Oil Production Rate
-- 1b) GOR vs time
WGOR
-- Well Gas-Oil Ratio
'PROD'
/
-- Using FGOR instead of WGOR:PROD results in the same graph
FGOR
-- In order to compare Eclipse with Flow:
WBHP
/
WGIR
/
WGIT
/
WGPR
/
WGPT
/
WOIR
/
WOIT
/
WOPR
/
WOPT
/
WWIR
/
WWIT
/
WWPR
/
WWPT
/
SOFR
'PROD' /
'WINJ' /
/
SPR
'PROD' /
'WINJ' /
/
SPRD
'PROD' /
'WINJ' /
/
SCHEDULE
-- -------------------------------------------------------------------------
TUNING
1* 1. /
/
20 1 50 1 16 16 /
TUNINGDP
/
RPTSCHED
'PRES' 'SGAS' 'RS' 'WELLS=5' WELSPECS /
RPTRST
'BASIC=2' /
-- If no resolution (i.e. case 1), the two following lines must be added:
--DRSDT
-- 0 /
-- if DRSDT is set to 0, GOR cannot rise and free gas does not
-- dissolve in undersaturated oil -> constant bubble point pressure
WELSPECS
'PROD' 'G' 1 5 7030 'OIL' 0.0 'STD' 'STOP' /
'WINJ' 'G' 10 1 7030 'WAT' 0.0 'STD' 'STOP' /
/
COMPDAT
'PROD' 1 5 2 2 3* 0.2 3* 'X' /
'PROD' 2 5 2 2 3* 0.2 3* 'X' /
'PROD' 3 5 2 2 3* 0.2 3* 'X' /
'PROD' 4 5 2 2 3* 0.2 3* 'X' /
'PROD' 5 5 2 2 3* 0.2 3* 'X' /
'WINJ' 10 1 9 9 3* 0.2 3* 'X' /
'WINJ' 9 1 9 9 3* 0.2 3* 'X' /
'WINJ' 8 1 9 9 3* 0.2 3* 'X' /
'WINJ' 7 1 9 9 3* 0.2 3* 'X' /
'WINJ' 6 1 9 9 3* 0.2 3* 'X' /
/
WELSEGS
-- Name Dep 1 Tlen 1 Vol 1
'PROD' 7010 10 0.31 'INC' /
-- First Last Branch Outlet Length Depth Diam Ruff Area Vol
-- Seg Seg Num Seg Chang
-- Main Stem
2 2 1 1 20 20 0.2 1.E-3 1* 1* /
-- Top Branch
3 3 2 2 50 0 0.2 1.E-3 1* 1* /
4 7 2 3 100 0 0.2 1.E-3 1* 1* /
8 8 3 4 0.32800 0 0.500 3.3E-5 /
9 9 4 5 0.32800 0 0.500 3.3E-5 /
10 10 5 6 0.32800 0 0.500 3.3E-5 /
/
COMPSEGS
-- Name
'PROD' /
-- I J K Brn Start End Dirn End
-- No Length Length Penet Range
-- Top Branch
1 5 2 2 30 130 'X' 3* /
2 5 2 2 130 230 'X' 3* /
3 5 2 2 230 330 'X' 3* /
4 5 2 2 330 430 'X' 3* /
5 5 2 2 430 530 'X' 3* /
-- Middle Branch
/
WSEGAICD
-- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ...
PROD 8 8 3.260E-05 0.06391 63.678 0.48 1* 1* 1* 1 1* 2.1 1.2 OPEN 1* 1* 1* 1* 1* 1* /
PROD 9 9 3.260E-05 0.07448 63.678 0.48 1* 1* 1* 1 1* 2.1 1.2 OPEN 1* 1* 1* 1* 1* 1* /
PROD 10 10 3.260E-05 0.0876 63.678 0.48 0.53 0.048 4.89 0 9.876E6 2.1 1.2 OPEN 0.92 0.89 0.91 1.01 1.02 1.03 /
/
WELSEGS
-- Name Dep 1 Tlen 1 Vol 1
'WINJ' 7010 10 0.31 'INC' /
-- First Last Branch Outlet Length Depth Diam Ruff Area Vol
-- Seg Seg Num Seg Chang
-- Main Stem
2 13 1 1 20 20 0.2 1.E-3 1* 1* /
-- Bottom Branch
14 14 2 13 50 0 0.2 1.E-3 1* 1* /
15 18 2 14 100 0 0.2 1.E-3 1* 1* /
/
COMPSEGS
-- Name
'WINJ' /
-- I J K Brn Start End Dirn End
-- No Length Length Penet Range
-- Bottom Branch
10 1 9 2 270 370 'X' 3* /
9 1 9 2 370 470 'X' 3* /
8 1 9 2 470 570 'X' 3* /
7 1 9 2 570 670 'X' 3* /
6 1 9 2 670 770 'X' 3* /
/
WCONPROD
'PROD' 'OPEN' 'GRAT' 2* 100000. 2000 1* 2500 1* /
/
WCONINJE
'WINJ' 'WAT' 'OPEN' 'RESV' 1* 2000 8000 1* /
/
TSTEP
--Advance the simulater once a month for TEN years:
30
30
180.
/
END