opm-common/tests/test_EclipseIO.cpp

401 lines
14 KiB
C++

/*
Copyright 2014 Andreas Lauser
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include "config.h"
#define BOOST_TEST_MODULE EclipseIO
#include <boost/test/unit_test.hpp>
#include <opm/output/eclipse/EclipseIO.hpp>
#include <opm/output/data/Cells.hpp>
#include <opm/parser/eclipse/Parser/Parser.hpp>
#include <opm/parser/eclipse/Deck/Deck.hpp>
#include <opm/parser/eclipse/Deck/DeckKeyword.hpp>
#include <opm/parser/eclipse/EclipseState/Grid/EclipseGrid.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/Schedule.hpp>
#include <opm/parser/eclipse/EclipseState/SummaryConfig/SummaryConfig.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/TimeMap.hpp>
#include <opm/parser/eclipse/EclipseState/IOConfig/IOConfig.hpp>
#include <opm/parser/eclipse/Units/Units.hpp>
#include <opm/parser/eclipse/Units/UnitSystem.hpp>
// ERT stuff
#include <ert/util/ert_unique_ptr.hpp>
#include <ert/util/test_work_area.h>
#include <ert/ecl/ecl_kw.h>
#include <ert/ecl/ecl_grid.h>
#include <ert/ecl/ecl_endian_flip.h>
#include <ert/ecl/ecl_file.h>
#include <ert/ecl/ecl_util.h>
#include <ert/ecl_well/well_info.h>
#include <memory>
#include <map>
using namespace Opm;
data::Solution createBlackoilState( int timeStepIdx, int numCells ) {
std::vector< double > pressure( numCells );
std::vector< double > swat( numCells );
std::vector< double > sgas( numCells );
std::vector< double > rs( numCells );
std::vector< double > rv( numCells );
for( int cellIdx = 0; cellIdx < numCells; ++cellIdx) {
pressure[cellIdx] = timeStepIdx*1e5 + 1e4 + cellIdx;
sgas[cellIdx] = timeStepIdx*1e5 +2.2e4 + cellIdx;
swat[cellIdx] = timeStepIdx*1e5 +2.3e4 + cellIdx;
// oil vaporization factor
rv[cellIdx] = timeStepIdx*1e5 +3e4 + cellIdx;
// gas dissolution factor
rs[cellIdx] = timeStepIdx*1e5 + 4e4 + cellIdx;
}
data::Solution solution;
solution.insert( "PRESSURE" , UnitSystem::measure::pressure , pressure, data::TargetType::RESTART_SOLUTION );
solution.insert( "SWAT" , UnitSystem::measure::identity , swat, data::TargetType::RESTART_SOLUTION );
solution.insert( "SGAS" , UnitSystem::measure::identity , sgas, data::TargetType::RESTART_SOLUTION );
solution.insert( "RS" , UnitSystem::measure::identity , rs, data::TargetType::RESTART_SOLUTION );
solution.insert( "RV" , UnitSystem::measure::identity , rv, data::TargetType::RESTART_SOLUTION );
return solution;
}
template< typename T >
std::vector< T > getErtData( ecl_kw_type *eclKeyword ) {
size_t kwSize = ecl_kw_get_size(eclKeyword);
T* ertData = static_cast< T* >(ecl_kw_iget_ptr(eclKeyword, 0));
return { ertData, ertData + kwSize };
}
template< typename T, typename U >
void compareErtData(const std::vector< T > &src,
const std::vector< U > &dst,
double tolerance ) {
BOOST_CHECK_EQUAL(src.size(), dst.size());
if (src.size() != dst.size())
return;
for (size_t i = 0; i < src.size(); ++i)
BOOST_CHECK_CLOSE(src[i], dst[i], tolerance);
}
void compareErtData(const std::vector<int> &src, const std::vector<int> &dst)
{
BOOST_CHECK_EQUAL_COLLECTIONS( src.begin(), src.end(),
dst.begin(), dst.end() );
}
void checkEgridFile( const EclipseGrid& eclGrid ) {
// use ERT directly to inspect the EGRID file produced by EclipseIO
auto egridFile = fortio_open_reader("FOO.EGRID", /*isFormated=*/0, ECL_ENDIAN_FLIP);
const auto numCells = eclGrid.getNX() * eclGrid.getNY() * eclGrid.getNZ();
while( auto* eclKeyword = ecl_kw_fread_alloc( egridFile ) ) {
std::string keywordName(ecl_kw_get_header(eclKeyword));
if (keywordName == "COORD") {
std::vector< double > sourceData;
eclGrid.exportCOORD( sourceData );
auto resultData = getErtData< float >( eclKeyword );
compareErtData(sourceData, resultData, 1e-6);
}
else if (keywordName == "ZCORN") {
std::vector< double > sourceData;
eclGrid.exportZCORN(sourceData);
auto resultData = getErtData< float >( eclKeyword );
compareErtData(sourceData, resultData, /*percentTolerance=*/1e-6);
}
else if (keywordName == "ACTNUM") {
std::vector< int > sourceData( numCells );
eclGrid.exportACTNUM(sourceData);
auto resultData = getErtData< int >( eclKeyword );
if( sourceData.empty() )
sourceData.assign( numCells, 1 );
compareErtData( sourceData, resultData );
}
ecl_kw_free(eclKeyword);
}
fortio_fclose(egridFile);
}
void loadWells( const char* grid_file , const char* restart_file ) {
ecl_grid_type * grid = ecl_grid_alloc( grid_file );
well_info_type * well_info = well_info_alloc( grid );
well_info_load_rstfile( well_info , restart_file, true);
well_info_free( well_info );
ecl_grid_free( grid );
}
void checkInitFile( const Deck& deck, const data::Solution& simProps) {
// use ERT directly to inspect the INIT file produced by EclipseIO
ERT::ert_unique_ptr<ecl_file_type , ecl_file_close> initFile(ecl_file_open( "FOO.INIT" , 0 ));
for (int k=0; k < ecl_file_get_size( initFile.get() ); k++) {
ecl_kw_type * eclKeyword = ecl_file_iget_kw( initFile.get( ) , k );
std::string keywordName(ecl_kw_get_header(eclKeyword));
if (keywordName == "PORO") {
const auto &sourceData = deck.getKeyword("PORO").getSIDoubleData();
auto resultData = getErtData< float >( eclKeyword );
compareErtData(sourceData, resultData, 1e-4);
}
if (keywordName == "PERMX") {
const auto& sourceData = deck.getKeyword("PERMX").getSIDoubleData();
auto resultData = getErtData< float >( eclKeyword );
// convert the data from ERT from Field to SI units (mD to m^2)
for (size_t i = 0; i < resultData.size(); ++i) {
resultData[i] *= 9.869233e-16;
}
compareErtData(sourceData, resultData, 1e-4);
}
}
/*
These keyword should always be in the INIT file, irrespective of
whether they appear in the inut deck or not.
*/
BOOST_CHECK( ecl_file_has_kw( initFile.get() , "NTG" ));
BOOST_CHECK( ecl_file_has_kw( initFile.get() , "FIPNUM" ));
BOOST_CHECK( ecl_file_has_kw( initFile.get() , "SATNUM" ));
for (const auto& prop : simProps) {
BOOST_CHECK( ecl_file_has_kw( initFile.get() , prop.first.c_str()) );
}
}
void checkRestartFile( int timeStepIdx ) {
for (int i = 1; i <= timeStepIdx; ++i) {
auto sol = createBlackoilState( i, 3 * 3 * 3 );
// use ERT directly to inspect the restart file produced by EclipseIO
auto rstFile = fortio_open_reader("FOO.UNRST", /*isFormated=*/0, ECL_ENDIAN_FLIP);
int curSeqnum = -1;
while( auto* eclKeyword = ecl_kw_fread_alloc(rstFile) ) {
std::string keywordName(ecl_kw_get_header(eclKeyword));
if (keywordName == "SEQNUM") {
curSeqnum = *static_cast<int*>(ecl_kw_iget_ptr(eclKeyword, 0));
}
if (curSeqnum != i)
continue;
if (keywordName == "PRESSURE") {
const auto resultData = getErtData< float >( eclKeyword );
for( auto& x : sol.data("PRESSURE") )
x /= Metric::Pressure;
compareErtData( sol.data("PRESSURE"), resultData, 1e-4 );
}
if (keywordName == "SWAT") {
const auto resultData = getErtData< float >( eclKeyword );
compareErtData(sol.data("SWAT"), resultData, 1e-4);
}
if (keywordName == "SGAS") {
const auto resultData = getErtData< float >( eclKeyword );
compareErtData( sol.data("SGAS"), resultData, 1e-4 );
}
if (keywordName == "KRO")
BOOST_CHECK_EQUAL( 1.0 * i * ecl_kw_get_size( eclKeyword ) , ecl_kw_element_sum_float( eclKeyword ));
if (keywordName == "KRG")
BOOST_CHECK_EQUAL( 10.0 * i * ecl_kw_get_size( eclKeyword ) , ecl_kw_element_sum_float( eclKeyword ));
}
fortio_fclose(rstFile);
}
}
BOOST_AUTO_TEST_CASE(EclipseIOIntegration) {
const char *deckString =
"RUNSPEC\n"
"UNIFOUT\n"
"OIL\n"
"GAS\n"
"WATER\n"
"METRIC\n"
"DIMENS\n"
"3 3 3/\n"
"GRID\n"
"INIT\n"
"DXV\n"
"1.0 2.0 3.0 /\n"
"DYV\n"
"4.0 5.0 6.0 /\n"
"DZV\n"
"7.0 8.0 9.0 /\n"
"TOPS\n"
"9*100 /\n"
"PROPS\n"
"PORO\n"
"27*0.3 /\n"
"PERMX\n"
"27*1 /\n"
"REGIONS\n"
"SATNUM\n"
"27*2 /\n"
"FIPNUM\n"
"27*3 /\n"
"SOLUTION\n"
"RPTRST\n"
"BASIC=2\n"
"/\n"
"SCHEDULE\n"
"TSTEP\n"
"1.0 2.0 3.0 4.0 5.0 6.0 7.0 /\n"
"WELSPECS\n"
"'INJ' 'G' 1 1 2000 'GAS' /\n"
"'PROD' 'G' 3 3 1000 'OIL' /\n"
"/\n";
auto write_and_check = [&]( int first = 1, int last = 5 ) {
auto deck = Parser().parseString( deckString);
auto es = EclipseState( deck );
auto& eclGrid = es.getInputGrid();
Schedule schedule(deck, eclGrid, es.get3DProperties(), es.runspec());
SummaryConfig summary_config( deck, schedule, es.getTableManager( ));
es.getIOConfig().setBaseName( "FOO" );
EclipseIO eclWriter( es, eclGrid , schedule, summary_config);
using measure = UnitSystem::measure;
using TargetType = data::TargetType;
auto start_time = ecl_util_make_date( 10, 10, 2008 );
std::vector<double> tranx(3*3*3);
std::vector<double> trany(3*3*3);
std::vector<double> tranz(3*3*3);
data::Solution eGridProps {
{ "TRANX", { measure::transmissibility, tranx, TargetType::INIT } },
{ "TRANY", { measure::transmissibility, trany, TargetType::INIT } },
{ "TRANZ", { measure::transmissibility, tranz, TargetType::INIT } },
};
std::map<std::string, std::vector<int>> int_data = {{"STR_ULONGNAME" , {1,1,1,1,1,1,1,1} } };
std::vector<int> v(27); v[2] = 67; v[26] = 89;
int_data["STR_V"] = v;
eclWriter.writeInitial( );
BOOST_CHECK_THROW( eclWriter.writeInitial( eGridProps , int_data) , std::invalid_argument);
int_data.erase("STR_ULONGNAME");
eclWriter.writeInitial( eGridProps , int_data );
data::Wells wells;
for( int i = first; i < last; ++i ) {
data::Solution sol = createBlackoilState( i, 3 * 3 * 3 );
sol.insert("KRO", measure::identity , std::vector<double>(3*3*3 , i), TargetType::RESTART_AUXILIARY);
sol.insert("KRG", measure::identity , std::vector<double>(3*3*3 , i*10), TargetType::RESTART_AUXILIARY);
RestartValue restart_value(sol, wells);
auto first_step = ecl_util_make_date( 10 + i, 11, 2008 );
eclWriter.writeTimeStep( i,
false,
first_step - start_time,
restart_value,
{},
{},
{});
checkRestartFile( i );
}
checkInitFile( deck , eGridProps);
checkEgridFile( eclGrid );
loadWells( "FOO.EGRID", "FOO.UNRST" );
ecl_file_type * ecl_file = ecl_file_open("FOO.INIT", 0);
BOOST_CHECK( ecl_file_has_kw(ecl_file, "STR_V") );
ecl_kw_type * kw = ecl_file_iget_named_kw(ecl_file, "STR_V", 0);
BOOST_CHECK(67 == ecl_kw_iget_as_double(kw, 2));
BOOST_CHECK(89 == ecl_kw_iget_as_double(kw, 26));
std::ifstream file( "FOO.UNRST", std::ios::binary );
std::streampos file_size = 0;
file_size = file.tellg();
file.seekg( 0, std::ios::end );
file_size = file.tellg() - file_size;
return file_size;
};
/*
* write the file and calculate the file size. FOO.UNRST should be
* overwitten for every time step, i.e. the file size should not change
* between runs. This is to verify that UNRST files are properly
* overwritten, which they used not to.
*
* * https://github.com/OPM/opm-simulators/issues/753
* * https://github.com/OPM/opm-output/pull/61
*/
test_work_area_type * work_area = test_work_area_alloc("test_ecl_writer");
const auto file_size = write_and_check();
for( int i = 0; i < 3; ++i )
BOOST_CHECK_EQUAL( file_size, write_and_check() );
/*
* check that "restarting" and writing over previous timesteps does not
* change the file size, if the total amount of steps are the same
*/
BOOST_CHECK_EQUAL( file_size, write_and_check( 3, 5 ) );
/* verify that adding steps from restart also increases file size */
BOOST_CHECK( file_size < write_and_check( 3, 7 ) );
/*
* verify that restarting a simulation, then writing fewer steps truncates
* the file
*/
BOOST_CHECK_EQUAL( file_size, write_and_check( 3, 5 ) );
test_work_area_free(work_area);
}
BOOST_AUTO_TEST_CASE(OPM_XWEL) {
}