this has mildly annoyed me for quite some time, and finally managed to bring myself to changing it: The Opm::FluidSystems namespace is pretty useless because the number of classes contained within it is quite small and mismatch between the naming convention of the file names the actual classes is somewhat confusing IMO. Thus, this patch changes the naming of fluid systems from `Opm::FluidSystems::Foo` to `Opm::FooFluidSystem`. (also, flat hierarchies currently seem to be popular with the cool people!?) this patch requires some simple mop-ups for `ewoms` and `opm-simulators`.
292 lines
10 KiB
C++
292 lines
10 KiB
C++
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
// vi: set et ts=4 sw=4 sts=4:
|
|
/*
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Consult the COPYING file in the top-level source directory of this
|
|
module for the precise wording of the license and the list of
|
|
copyright holders.
|
|
*/
|
|
/*!
|
|
* \file
|
|
*
|
|
* \brief This is a program to test the flash calculation which uses
|
|
* non-linear complementarity problems (NCP)
|
|
*
|
|
* A flash calculation determines the pressures, saturations and
|
|
* composition of all phases given the total mass (or, as in this case
|
|
* the total number of moles) in a given amount of pore space.
|
|
*/
|
|
#include "config.h"
|
|
|
|
#include <opm/material/densead/Evaluation.hpp>
|
|
#include <opm/material/constraintsolvers/MiscibleMultiPhaseComposition.hpp>
|
|
#include <opm/material/constraintsolvers/ComputeFromReferencePhase.hpp>
|
|
#include <opm/material/constraintsolvers/ImmiscibleFlash.hpp>
|
|
|
|
#include <opm/material/fluidstates/ImmiscibleFluidState.hpp>
|
|
|
|
#include <opm/material/fluidsystems/H2ON2FluidSystem.hpp>
|
|
|
|
#include <opm/material/fluidmatrixinteractions/LinearMaterial.hpp>
|
|
#include <opm/material/fluidmatrixinteractions/RegularizedBrooksCorey.hpp>
|
|
#include <opm/material/fluidmatrixinteractions/EffToAbsLaw.hpp>
|
|
#include <opm/material/fluidmatrixinteractions/MaterialTraits.hpp>
|
|
|
|
#include <dune/common/parallel/mpihelper.hh>
|
|
|
|
#include <sstream>
|
|
|
|
template <class Scalar, class FluidState>
|
|
void checkSame(const FluidState& fsRef, const FluidState& fsFlash)
|
|
{
|
|
enum { numPhases = FluidState::numPhases };
|
|
enum { numComponents = FluidState::numComponents };
|
|
|
|
Scalar tol = std::max(std::numeric_limits<Scalar>::epsilon()*1e4, 1e-6);
|
|
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
Scalar error;
|
|
|
|
// check the pressures
|
|
error = 1 - fsRef.pressure(phaseIdx)/fsFlash.pressure(phaseIdx);
|
|
if (std::abs(error) > tol) {
|
|
std::ostringstream oss;
|
|
oss << "pressure error phase " << phaseIdx << " is incorrect: "
|
|
<< fsFlash.pressure(phaseIdx) << " flash vs "
|
|
<< fsRef.pressure(phaseIdx) << " reference"
|
|
<< " error=" << error;
|
|
throw std::runtime_error(oss.str());
|
|
}
|
|
|
|
// check the saturations
|
|
error = fsRef.saturation(phaseIdx) - fsFlash.saturation(phaseIdx);
|
|
if (std::abs(error) > tol) {
|
|
std::ostringstream oss;
|
|
oss << "saturation error phase " << phaseIdx << " is incorrect: "
|
|
<< fsFlash.saturation(phaseIdx) << " flash vs "
|
|
<< fsRef.saturation(phaseIdx) << " reference"
|
|
<< " error=" << error;
|
|
throw std::runtime_error(oss.str());
|
|
}
|
|
|
|
// check the compositions
|
|
for (unsigned compIdx = 0; compIdx < numComponents; ++ compIdx) {
|
|
error = fsRef.moleFraction(phaseIdx, compIdx) - fsFlash.moleFraction(phaseIdx, compIdx);
|
|
if (std::abs(error) > tol) {
|
|
std::ostringstream oss;
|
|
oss << "composition error phase " << phaseIdx << ", component " << compIdx
|
|
<< " is incorrect: "
|
|
<< fsFlash.moleFraction(phaseIdx, compIdx) << " flash vs "
|
|
<< fsRef.moleFraction(phaseIdx, compIdx) << " reference"
|
|
<< " error=" << error;
|
|
throw std::runtime_error(oss.str());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class Scalar, class FluidSystem, class MaterialLaw, class FluidState>
|
|
void checkImmiscibleFlash(const FluidState& fsRef,
|
|
typename MaterialLaw::Params& matParams)
|
|
{
|
|
enum { numPhases = FluidSystem::numPhases };
|
|
enum { numComponents = FluidSystem::numComponents };
|
|
typedef Dune::FieldVector<Scalar, numComponents> ComponentVector;
|
|
|
|
// calculate the total amount of stuff in the reference fluid
|
|
// phase
|
|
ComponentVector globalMolarities(0.0);
|
|
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
globalMolarities[compIdx] +=
|
|
fsRef.saturation(phaseIdx)*fsRef.molarity(phaseIdx, compIdx);
|
|
}
|
|
}
|
|
|
|
// initialize the fluid state for the flash calculation
|
|
typedef Opm::ImmiscibleFlash<Scalar, FluidSystem> ImmiscibleFlash;
|
|
FluidState fsFlash;
|
|
|
|
fsFlash.setTemperature(fsRef.temperature(/*phaseIdx=*/0));
|
|
|
|
// run the flash calculation
|
|
ImmiscibleFlash::guessInitial(fsFlash, globalMolarities);
|
|
typename FluidSystem::template ParameterCache<typename FluidState::Scalar> paramCache;
|
|
ImmiscibleFlash::template solve<MaterialLaw>(fsFlash, matParams, paramCache, globalMolarities);
|
|
|
|
// compare the "flashed" fluid state with the reference one
|
|
checkSame<Scalar>(fsRef, fsFlash);
|
|
}
|
|
|
|
|
|
template <class Scalar, class FluidSystem, class MaterialLaw, class FluidState>
|
|
void completeReferenceFluidState(FluidState& fs,
|
|
typename MaterialLaw::Params& matParams,
|
|
unsigned refPhaseIdx)
|
|
{
|
|
enum { numPhases = FluidSystem::numPhases };
|
|
typedef Dune::FieldVector<Scalar, numPhases> PhaseVector;
|
|
|
|
unsigned otherPhaseIdx = 1 - refPhaseIdx;
|
|
|
|
// calculate the other saturation
|
|
fs.setSaturation(otherPhaseIdx, 1.0 - fs.saturation(refPhaseIdx));
|
|
|
|
// calulate the capillary pressure
|
|
PhaseVector pC;
|
|
MaterialLaw::capillaryPressures(pC, matParams, fs);
|
|
fs.setPressure(otherPhaseIdx,
|
|
fs.pressure(refPhaseIdx)
|
|
+ (pC[otherPhaseIdx] - pC[refPhaseIdx]));
|
|
|
|
// set all phase densities
|
|
typename FluidSystem::template ParameterCache<typename FluidState::Scalar> paramCache;
|
|
paramCache.updateAll(fs);
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {
|
|
Scalar rho = FluidSystem::density(fs, paramCache, phaseIdx);
|
|
fs.setDensity(phaseIdx, rho);
|
|
}
|
|
}
|
|
|
|
template <class Scalar>
|
|
inline void testAll()
|
|
{
|
|
typedef Opm::H2ON2FluidSystem<Scalar> FluidSystem;
|
|
typedef Opm::ImmiscibleFluidState<Scalar, FluidSystem> ImmiscibleFluidState;
|
|
|
|
enum { numPhases = FluidSystem::numPhases };
|
|
enum { numComponents = FluidSystem::numComponents };
|
|
enum { liquidPhaseIdx = FluidSystem::liquidPhaseIdx };
|
|
enum { gasPhaseIdx = FluidSystem::gasPhaseIdx };
|
|
|
|
enum { H2OIdx = FluidSystem::H2OIdx };
|
|
enum { N2Idx = FluidSystem::N2Idx };
|
|
|
|
typedef Opm::TwoPhaseMaterialTraits<Scalar, liquidPhaseIdx, gasPhaseIdx> MaterialLawTraits;
|
|
typedef Opm::RegularizedBrooksCorey<MaterialLawTraits> EffMaterialLaw;
|
|
typedef Opm::EffToAbsLaw<EffMaterialLaw> MaterialLaw;
|
|
typedef typename MaterialLaw::Params MaterialLawParams;
|
|
|
|
std::cout << "---- using " << Dune::className<Scalar>() << " as scalar ----\n";
|
|
Scalar T = 273.15 + 25;
|
|
|
|
// initialize the tables of the fluid system
|
|
Scalar Tmin = T - 1.0;
|
|
Scalar Tmax = T + 1.0;
|
|
unsigned nT = 3;
|
|
|
|
Scalar pmin = 0.0;
|
|
Scalar pmax = 1.25 * 2e6;
|
|
unsigned np = 100;
|
|
|
|
FluidSystem::init(Tmin, Tmax, nT, pmin, pmax, np);
|
|
|
|
// set the parameters for the capillary pressure law
|
|
MaterialLawParams matParams;
|
|
matParams.setResidualSaturation(MaterialLaw::wettingPhaseIdx, 0.0);
|
|
matParams.setResidualSaturation(MaterialLaw::nonWettingPhaseIdx, 0.0);
|
|
matParams.setEntryPressure(0);
|
|
matParams.setLambda(2.0);
|
|
matParams.finalize();
|
|
|
|
ImmiscibleFluidState fsRef;
|
|
|
|
// create an fluid state which is consistent
|
|
|
|
// set the fluid temperatures
|
|
fsRef.setTemperature(T);
|
|
|
|
////////////////
|
|
// only liquid
|
|
////////////////
|
|
std::cout << "testing single-phase liquid\n";
|
|
|
|
// set liquid saturation and pressure
|
|
fsRef.setSaturation(liquidPhaseIdx, 1.0);
|
|
fsRef.setPressure(liquidPhaseIdx, 1e6);
|
|
|
|
// set the remaining parameters of the reference fluid state
|
|
completeReferenceFluidState<Scalar, FluidSystem, MaterialLaw>(fsRef, matParams, liquidPhaseIdx);
|
|
|
|
// check the flash calculation
|
|
checkImmiscibleFlash<Scalar, FluidSystem, MaterialLaw>(fsRef, matParams);
|
|
|
|
////////////////
|
|
// only gas
|
|
////////////////
|
|
std::cout << "testing single-phase gas\n";
|
|
|
|
// set gas saturation and pressure
|
|
fsRef.setSaturation(gasPhaseIdx, 1.0);
|
|
fsRef.setPressure(gasPhaseIdx, 1e6);
|
|
|
|
// set the remaining parameters of the reference fluid state
|
|
completeReferenceFluidState<Scalar, FluidSystem, MaterialLaw>(fsRef, matParams, gasPhaseIdx);
|
|
|
|
// check the flash calculation
|
|
checkImmiscibleFlash<Scalar, FluidSystem, MaterialLaw>(fsRef, matParams);
|
|
|
|
////////////////
|
|
// both phases
|
|
////////////////
|
|
std::cout << "testing two-phase\n";
|
|
|
|
// set liquid saturation and pressure
|
|
fsRef.setSaturation(liquidPhaseIdx, 0.5);
|
|
fsRef.setPressure(liquidPhaseIdx, 1e6);
|
|
|
|
// set the remaining parameters of the reference fluid state
|
|
completeReferenceFluidState<Scalar, FluidSystem, MaterialLaw>(fsRef, matParams, liquidPhaseIdx);
|
|
|
|
// check the flash calculation
|
|
checkImmiscibleFlash<Scalar, FluidSystem, MaterialLaw>(fsRef, matParams);
|
|
|
|
////////////////
|
|
// with capillary pressure
|
|
////////////////
|
|
std::cout << "testing two-phase with capillary pressure\n";
|
|
|
|
MaterialLawParams matParams2;
|
|
matParams2.setResidualSaturation(MaterialLaw::wettingPhaseIdx, 0.0);
|
|
matParams2.setResidualSaturation(MaterialLaw::nonWettingPhaseIdx, 0.0);
|
|
matParams2.setEntryPressure(1e3);
|
|
matParams2.setLambda(2.0);
|
|
matParams2.finalize();
|
|
|
|
// set liquid saturation
|
|
fsRef.setSaturation(liquidPhaseIdx, 0.5);
|
|
|
|
// set pressure of the liquid phase
|
|
fsRef.setPressure(liquidPhaseIdx, 1e6);
|
|
|
|
// set the remaining parameters of the reference fluid state
|
|
completeReferenceFluidState<Scalar, FluidSystem, MaterialLaw>(fsRef, matParams2, liquidPhaseIdx);
|
|
|
|
// check the flash calculation
|
|
checkImmiscibleFlash<Scalar, FluidSystem, MaterialLaw>(fsRef, matParams2);
|
|
}
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
Dune::MPIHelper::instance(argc, argv);
|
|
|
|
testAll<double>();
|
|
testAll<float>();
|
|
|
|
return 0;
|
|
}
|