From 14f9faa0111a6d2e6d42e785f21a33c206d148ab Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?B=C3=A5rd=20Skaflestad?= Date: Sun, 24 Jun 2012 03:59:18 +0200 Subject: [PATCH] Add Doxygen-style documentation to all interfaces. --- opm/core/pressure/mimetic/mimetic.h | 282 ++++++++++++++++++++++------ 1 file changed, 227 insertions(+), 55 deletions(-) diff --git a/opm/core/pressure/mimetic/mimetic.h b/opm/core/pressure/mimetic/mimetic.h index 03d396f9..50f4ddc3 100644 --- a/opm/core/pressure/mimetic/mimetic.h +++ b/opm/core/pressure/mimetic/mimetic.h @@ -20,78 +20,250 @@ #ifndef OPM_MIMETIC_HEADER_INCLUDED #define OPM_MIMETIC_HEADER_INCLUDED +/** + * \file + * Routines to assist mimetic discretisations of the flow equation. + */ + #ifdef __cplusplus extern "C" { #endif -void mim_ip_span_nullspace(int nf, int nconn, int d, - double *C, - double *A, - double *X, - double *work, int lwork); - -void mim_ip_linpress_exact(int nf, int nconn, int d, - double vol, double *K, - double *N, - double *Binv, - double *work, int lwork); - -void mim_ip_simple(int nf, int nconn, int d, - double v, double *K, double *C, - double *A, double *N, - double *Binv, - double *work, int lwork); - - -/** Compute the mimetic inner products given a grid and cellwise - * permeability tensors. +/** + * Form linear operator to span the null space of the normal vectors + * of a grid cell. * - * @param ncells Number of cells in grid. - * @param d Number of space dimensions. - * @param max_ncf Maximum number of faces per cell. - * @param pconn Start indices in conn for each cell, plus end - * marker. The size of pconn is (ncells + 1), and for a - * cell i, [conn[pconn[i]], conn[pconn[i+1]]) is a - * half-open interval containing the indices of faces - * adjacent to i. - * @param conn Cell to face mapping. Size shall be equal to the sum of - * ncf. See pconn for explanation. - * @param fneighbour Face to cell mapping. Its size shall be equal to - * the number of faces times 2. For each face, the - * two entries are either a cell number or -1 - * (signifying the outer boundary). The face normal - * points out of the first cell and into the second. - * @param fcentroid Face centroids. Size shall be equal to the number - * of faces times d. - * @param fnormal Face normale. Size shall be equal to the number - * of faces times d. - * @param farea Face areas. - * @param ccentroid Cell centroids. Size shall be ncells*d. - * @param cvol Cell volumes. - * @param perm Permeability. Size shall be ncells*d*d, storing a - * d-by-d positive definite tensor per cell. - * @param[out] Binv This is where the inner product will be - * stored. Its size shall be equal to \f$\sum_i - * n_i^2\f$. + * Specifically, + * \f[ + * \begin{aligned} + * X &= \operatorname{diag}(A) (I - QQ^\mathsf{T}) + * \operatorname{diag}(A), \\ + * Q &= \operatorname{orth}(\operatorname{diag}(A) C) + * \end{aligned} + * \f] + * in which \f$\operatorname{orth}(M)\f$ denotes an orthonormal + * basis for the colum space (range) of the matrix \f$M\f$, + * represented as a matrix. + * + * @param[in] nf Number of faces connected to single grid cell. + * @param[in] nconn Total number of grid cell connections. + * Typically equal to @c nf. + * @param[in] d Number of physical dimensions. + * Assumed less than four. + * @param[in,out] C Centroid vectors. Specifically, + * \f$c_{ij} = \Bar{x}_{ij} - \Bar{x}_{cj}\f$. + * Array of size \f$\mathit{nf}\times d\f$ + * in column major (Fortran) order. + * Contents destroyed on output. + * @param[in] A Interface areas. + * @param[out] X Null space linear operator. Array of size + * \f$\mathit{nconn}\times\mathit{nconn}\f$ + * in column major (Fortran) order. On output, + * the upper left \f$\mathit{nf}\times\mathit{nf}\f$ + * sub-matrix contains the required null space + * linear operator. + * @param[out] work Scratch array of size at least @c nconn. + * @param[in] lwork Actual size of scratch array. */ -void mim_ip_simple_all(int ncells, int d, int max_ncf, - int *pconn, int *conn, - int *fneighbour, double *fcentroid, double *fnormal, - double *farea, double *ccentroid, double *cvol, - double *perm, double *Binv); +void +mim_ip_span_nullspace(int nf, int nconn, int d, + double *C, + double *A, + double *X, + double *work, int lwork); +/** + * Form (inverse) mimetic inner product that reproduces linear + * pressure drops (constant velocity) on general polyhedral cells. + * + * Specifically + * \f[ + * B^{-1} = \frac{1}{v} \big(NKN^\mathsf{T} + \frac{6t}{d}\,X\big) + * \f] + * in which \f$t = \operatorname{tr}(K)\f$ is the trace of \f$K\f$ + * and \f$X\f$ is the result of function mim_ip_span_nullspace(). + * + * @param[in] nf Number of faces connected to single grid cell. + * @param[in] nconn Total number of grid cell connections. + * Typically equal to @c nf. + * @param[in] d Number of physical dimensions. + * Assumed less than four. + * @param[in] vol Cell volume. + * @param[in] K Permeability. A \f$d\times d\f$ matrix in + * column major (Fortran) order. + * @param[in] N Normal vectors. An \f$\mathit{nf}\times d\f$ + * matrix in column major (Fortran) order. + * @param[in,out] Binv Inverse inner product result. An + * \f$\mathit{nconn}\times\mathit{nconn}\f$ + * matrix in column major format. On input, + * the result of mim_ip_span_nullspace(). On + * output, the upper left + * \f$\mathit{nf}\times\mathit{nf}\f$ sub-matrix + * will be overwritten with \f$B^{-1}\f$. + * @param[in,out] work Scratch array of size at least nf * d. + * @param[in] lwork Actual size of scratch array. + */ +void +mim_ip_linpress_exact(int nf, int nconn, int d, + double vol, double *K, + double *N, + double *Binv, + double *work, int lwork); + + +/** + * Convenience wrapper around the function pair mim_ip_span_nullspace() + * and mim_ip_linpress_exact(). + * + * @param[in] nf Number of faces connected to single grid cell. + * @param[in] nconn Total number of grid cell connections. + * Typically equal to @c nf. + * @param[in] d Number of physical dimensions. + * Assumed less than four. + * @param[in] v Cell volume. + * @param[in] K Permeability. A \f$d\times d\f$ matrix in + * column major (Fortran) order. + * @param[in,out] C Centroid vectors. Specifically, + * \f$c_{ij} = \Bar{x}_{ij} - \Bar{x}_{cj}\f$. + * Array of size \f$\mathit{nf}\times d\f$ + * in column major (Fortran) order. + * Contents destroyed on output. + * @param[in] A Interface areas. + * @param[in] N Outward normal vectors. + * An \f$\mathit{nf}\times d\f$ matrix in + * column major (Fortran) order. + * @param[out] Binv Inverse inner product result. An + * \f$\mathit{nconn}\times\mathit{nconn}\f$ + * matrix in column major format. On + * output, the upper left + * \f$\mathit{nf}\times\mathit{nf}\f$ sub-matrix + * will be overwritten with \f$B^{-1}\f$ + * defined by function mim_ip_linpress_exact(). + * @param[in,out] work Scratch array of size at least nf * d. + * @param[in] lwork Actual size of scratch array. + */ +void +mim_ip_simple(int nf, int nconn, int d, + double v, double *K, double *C, + double *A, double *N, + double *Binv, + double *work, int lwork); + + +/** + * Compute the mimetic inner products given a grid and cell-wise + * permeability tensors. + * + * This function applies mim_ip_simple() to all specified cells. + * + * @param[in] ncells Number of cells. + * @param[in] d Number of physical dimensions. + * @param[in] max_ncf Maximum number of connections (faces) + * of any individual cell. + * @param[in] pconn Start pointers of cell-to-face topology + * mapping. + * @param[in] conn Actual cell-to-face topology mapping. + * @param[in] fneighbour Face-to-cell mapping. + * @param[in] fcentroid Face centroids. + * @param[in] fnormal Face normals. + * @param[in] farea Face areas. + * @param[in] ccentroid Cell centroids. + * @param[in] cvol Cell volumes. + * @param[in] perm Cell permeability. + * @param[out] Binv Inverse inner product result. Must point + * to an array of size at least + * \f$\sum_c n_c^2\f$ when \f$n_c\f$ denotes + * the number of connections (faces) of + * cell \f$c\f$. + */ +void +mim_ip_simple_all(int ncells, int d, int max_ncf, + int *pconn, int *conn, + int *fneighbour, double *fcentroid, double *fnormal, + double *farea, double *ccentroid, double *cvol, + double *perm, double *Binv); + +/** + * Compute local, static gravity pressure contributions to Darcy + * flow equation discretised using a mimetic finite-difference method. + * + * The pressure contribution of local face \f$i\f$ in cell \f$c\f$ is + * \f[ + * \mathit{gpress}_{\mathit{pconn}_c + i} = + * \vec{g}\cdot (\Bar{x}_{\mathit{conn}_{\mathit{pconn}_c + i}} + * - \Bar{x}_c) + * \f] + * + * @param[in] nc Number of cells. + * @param[in] d Number of physcial dimensions. + * @param[in] grav Gravity vector. Array of size @c d. + * @param[in] pconn Start pointers of cell-to-face topology + * mapping. + * @param[in] conn Actual cell-to-face topology mapping. + * @param[in] fcentroid Face centroids. + * @param[in] ccentroid Cell centroids. + * @param[out] gpress Gravity pressure result. Array of size + * at least pconn[nc]. + */ void mim_ip_compute_gpress(int nc, int d, const double *grav, const int *pconn, const int *conn, const double *fcentroid, const double *ccentroid, double *gpress); -/* inv(B) <- \lambda_t(s)*inv(B)_0 */ + +/** + * Incorporate effects of multiple phases in mimetic discretisation of + * flow equations. + * + * Specifically, update the (inverse) inner products \f$B^{-1}\f$ + * previously computed using function mim_ip_linpress_exact() according + * to the rule + * \f[ + * \Tilde{B}_c^{-1} = \frac{1}{\lambda_{T,c}} B_c^{-1}, + * \quad i=0,\dots,\mathit{nc}-1 + * \f] + * in which \f$B_c^{-1}\f$ denotes the result of mim_ip_linpress_exact() + * for cell \f$c\f$ and \f$\lambda_{T,c}\f$ denotes the total mobility + * of cell \f$c\f$. + * + * @param[in] nc Number of cells. + * @param[in] pconn Start pointers of cell-to-face topology + * mapping. + * @param[in] totmob Total mobility for all cells. Array of size @c nc. + * @param[in] Binv0 Inverse inner product results for all cells. + * @param[out] Binv Inverse inner product results incorporating + * effects of multiple fluid phases. + */ void mim_ip_mobility_update(int nc, const int *pconn, const double *totmob, const double *Binv0, double *Binv); -/* G <- \sum_i \rho_i f_i(s) * G_0 */ + +/** + * Incorporate effects of multiple fluid phases into existing, local, + * static mimetic discretisations of gravity pressure. + * + * Specifically, update the result of mim_ip_compute_gpress() + * according to the rule + * \f[ + * \Tilde{G}_{\mathit{pconn}_c + i} = \omega_c\cdot + * G_{\mathit{pconn}_c + i}, \quad i=\mathit{pconn}_c, \dots, + * \mathit{pconn}_{c+1}-1, \quad c=0,\dots,\mathit{nc}-1 + * \f] + * in which \f$\omega_c = (\sum_\alpha \lambda_{\alpha,c} + * \rho_\alpha)/\lambda_{T,c}\f$ and \f$\Tilde{G}\f$ denotes the result + * of function mim_ip_compute_gpress(). + * + * @param[in] nc Number of cells. + * @param[in] pconn Start pointers of cell-to-face topology + * mapping. + * @param[in] omega Sum of phase densities weighted by + * fractional flow. + * @param[in] gpress0 Result of mim_ip_compute_gpress(). + * @param[out] gpress Gravity pressure incorporating effects + * of multiple fluid phases. + */ void mim_ip_density_update(int nc, const int *pconn, const double *omega, const double *gpress0, double *gpress);