diff --git a/CMakeLists_files.cmake b/CMakeLists_files.cmake
index 17a17ede..b7455174 100644
--- a/CMakeLists_files.cmake
+++ b/CMakeLists_files.cmake
@@ -163,7 +163,6 @@ list (APPEND EXAMPLE_SOURCE_FILES
examples/scaneclipsedeck.c
examples/sim_2p_comp_reorder.cpp
examples/sim_2p_incomp_reorder.cpp
- examples/sim_wateroil.cpp
examples/spu_2p.cpp
examples/wells_example.cpp
tutorials/tutorial1.cpp
diff --git a/examples/sim_wateroil.cpp b/examples/sim_wateroil.cpp
deleted file mode 100644
index 46d1f193..00000000
--- a/examples/sim_wateroil.cpp
+++ /dev/null
@@ -1,477 +0,0 @@
-/*
- Copyright 2012 SINTEF ICT, Applied Mathematics.
-
- This file is part of the Open Porous Media project (OPM).
-
- OPM is free software: you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation, either version 3 of the License, or
- (at your option) any later version.
-
- OPM is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with OPM. If not, see .
-*/
-
-
-#if HAVE_CONFIG_H
-#include "config.h"
-#endif // HAVE_CONFIG_H
-
-#include
-
-#include
-#include
-#include
-#include
-#include
-#include
-#include
-#include
-#include
-#include
-#include
-#include
-#include
-
-#include
-#include
-#include
-
-#include
-
-#include
-#include
-#include
-#include
-
-#include
-
-#include
-#include
-#include
-
-#include
-#include
-
-#include
-#include
-#include
-#include
-#include
-#include
-#include
-#include
-#include
-
-
-template
-static void outputState(const UnstructuredGrid& grid,
- const State& state,
- const int step,
- const std::string& output_dir)
-{
- // Write data in VTK format.
- std::ostringstream vtkfilename;
- vtkfilename << output_dir << "/output-" << std::setw(3) << std::setfill('0') << step << ".vtu";
- std::ofstream vtkfile(vtkfilename.str().c_str());
- if (!vtkfile) {
- THROW("Failed to open " << vtkfilename.str());
- }
- Opm::DataMap dm;
- dm["saturation"] = &state.saturation();
- dm["pressure"] = &state.pressure();
- std::vector cell_velocity;
- Opm::estimateCellVelocity(grid, state.faceflux(), cell_velocity);
- dm["velocity"] = &cell_velocity;
- Opm::writeVtkData(grid, dm, vtkfile);
-
- // Write data (not grid) in Matlab format
- for (Opm::DataMap::const_iterator it = dm.begin(); it != dm.end(); ++it) {
- std::ostringstream fname;
- fname << output_dir << "/" << it->first << "-" << std::setw(3) << std::setfill('0') << step << ".dat";
- std::ofstream file(fname.str().c_str());
- if (!file) {
- THROW("Failed to open " << fname.str());
- }
- const std::vector& d = *(it->second);
- std::copy(d.begin(), d.end(), std::ostream_iterator(file, "\n"));
- }
-}
-
-
-static void outputWaterCut(const Opm::Watercut& watercut,
- const std::string& output_dir)
-{
- // Write water cut curve.
- std::string fname = output_dir + "/watercut.txt";
- std::ofstream os(fname.c_str());
- if (!os) {
- THROW("Failed to open " << fname);
- }
- watercut.write(os);
-}
-
-
-static void outputWellReport(const Opm::WellReport& wellreport,
- const std::string& output_dir)
-{
- // Write well report.
- std::string fname = output_dir + "/wellreport.txt";
- std::ofstream os(fname.c_str());
- if (!os) {
- THROW("Failed to open " << fname);
- }
- wellreport.write(os);
-}
-
-
-// ----------------- Main program -----------------
-int
-main(int argc, char** argv)
-{
- using namespace Opm;
-
- std::cout << "\n================ Test program for weakly compressible two-phase flow ===============\n\n";
- Opm::parameter::ParameterGroup param(argc, argv, false);
- std::cout << "--------------- Reading parameters ---------------" << std::endl;
-
- // Reading various control parameters.
- const bool output = param.getDefault("output", true);
- std::string output_dir;
- int output_interval = 1;
- if (output) {
- output_dir = param.getDefault("output_dir", std::string("output"));
- // Ensure that output dir exists
- boost::filesystem::path fpath(output_dir);
- try {
- create_directories(fpath);
- }
- catch (...) {
- THROW("Creating directories failed: " << fpath);
- }
- output_interval = param.getDefault("output_interval", output_interval);
- }
- const int num_transport_substeps = param.getDefault("num_transport_substeps", 1);
-
- // If we have a "deck_filename", grid and props will be read from that.
- bool use_deck = param.has("deck_filename");
- boost::scoped_ptr grid;
- boost::scoped_ptr props;
- boost::scoped_ptr wells;
- boost::scoped_ptr rock_comp;
- Opm::SimulatorTimer simtimer;
- Opm::BlackoilState state;
- bool check_well_controls = false;
- int max_well_control_iterations = 0;
- double gravity[3] = { 0.0 };
- if (use_deck) {
- std::string deck_filename = param.get("deck_filename");
- Opm::EclipseGridParser deck(deck_filename);
- // Grid init
- grid.reset(new Opm::GridManager(deck));
- // Rock and fluid init
- props.reset(new BlackoilPropertiesFromDeck(deck, *grid->c_grid(), param));
- // Wells init.
- wells.reset(new Opm::WellsManager(deck, *grid->c_grid(), props->permeability()));
- check_well_controls = param.getDefault("check_well_controls", false);
- max_well_control_iterations = param.getDefault("max_well_control_iterations", 10);
- // Timer init.
- if (deck.hasField("TSTEP")) {
- simtimer.init(deck);
- } else {
- simtimer.init(param);
- }
- // Rock compressibility.
- rock_comp.reset(new Opm::RockCompressibility(deck));
- // Gravity.
- gravity[2] = deck.hasField("NOGRAV") ? 0.0 : Opm::unit::gravity;
- // Init state variables (saturation and pressure).
- if (param.has("init_saturation")) {
- initStateBasic(*grid->c_grid(), *props, param, gravity[2], state);
- } else {
- initStateFromDeck(*grid->c_grid(), *props, deck, gravity[2], state);
- }
- initBlackoilSurfvol(*grid->c_grid(), *props, state);
- } else {
- // Grid init.
- const int nx = param.getDefault("nx", 100);
- const int ny = param.getDefault("ny", 100);
- const int nz = param.getDefault("nz", 1);
- const double dx = param.getDefault("dx", 1.0);
- const double dy = param.getDefault("dy", 1.0);
- const double dz = param.getDefault("dz", 1.0);
- grid.reset(new Opm::GridManager(nx, ny, nz, dx, dy, dz));
- // Rock and fluid init.
- props.reset(new Opm::BlackoilPropertiesBasic(param, grid->c_grid()->dimensions, grid->c_grid()->number_of_cells));
- // Wells init.
- wells.reset(new Opm::WellsManager());
- // Timer init.
- simtimer.init(param);
- // Rock compressibility.
- rock_comp.reset(new Opm::RockCompressibility(param));
- // Gravity.
- gravity[2] = param.getDefault("gravity", 0.0);
- // Init state variables (saturation and pressure).
- initStateBasic(*grid->c_grid(), *props, param, gravity[2], state);
- }
-
- // Warn if gravity but no density difference.
- bool use_gravity = (gravity[0] != 0.0 || gravity[1] != 0.0 || gravity[2] != 0.0);
- if (use_gravity) {
- if (props->surfaceDensity()[0] == props->surfaceDensity()[1]) {
- std::cout << "**** Warning: nonzero gravity, but zero density difference." << std::endl;
- }
- }
- bool use_segregation_split = false;
- if (use_gravity) {
- use_segregation_split = param.getDefault("use_segregation_split", use_segregation_split);
- }
-
- // Source-related variables init.
- int num_cells = grid->c_grid()->number_of_cells;
- std::vector totmob;
- std::vector omega; // Will remain empty if no gravity.
- std::vector rc; // Will remain empty if no rock compressibility.
-
- // Extra rock init.
- std::vector porevol;
- if (rock_comp->isActive()) {
- computePorevolume(*grid->c_grid(), props->porosity(), *rock_comp, state.pressure(), porevol);
- } else {
- computePorevolume(*grid->c_grid(), props->porosity(), porevol);
- }
- std::vector initial_porevol = porevol;
- double tot_porevol_init = std::accumulate(porevol.begin(), porevol.end(), 0.0);
-
-
- // Initialising src
- std::vector src(num_cells, 0.0);
- if (wells->c_wells()) {
- // Do nothing, wells will be the driving force, not source terms.
- // Opm::wellsToSrc(*wells->c_wells(), num_cells, src);
- } else {
- const double default_injection = use_gravity ? 0.0 : 0.1;
- const double flow_per_sec = param.getDefault("injected_porevolumes_per_day", default_injection)
- *tot_porevol_init/Opm::unit::day;
- src[0] = flow_per_sec;
- src[num_cells - 1] = -flow_per_sec;
- }
-
- std::vector reorder_src = src;
-
- // Solvers init.
- // Linear solver.
- Opm::LinearSolverFactory linsolver(param);
- // Pressure solver.
- const double nl_press_res_tol = param.getDefault("nl_press_res_tol", 1e-6);
- const double nl_press_change_tol = param.getDefault("nl_press_change_tol", 10.0);
- const int nl_press_maxiter = param.getDefault("nl_press_maxiter", 20);
- const double *grav = use_gravity ? &gravity[0] : 0;
- Opm::CompressibleTpfa psolver(*grid->c_grid(), *props, rock_comp.get(), linsolver,
- nl_press_res_tol, nl_press_change_tol, nl_press_maxiter,
- grav, wells->c_wells());
- // Reordering solver.
- const double nl_tolerance = param.getDefault("nl_tolerance", 1e-9);
- const int nl_maxiter = param.getDefault("nl_maxiter", 30);
- Opm::TransportModelCompressibleTwophase reorder_model(*grid->c_grid(), *props, nl_tolerance, nl_maxiter);
- if (use_segregation_split) {
- reorder_model.initGravity(grav);
- }
-
- // Column-based gravity segregation solver.
- std::vector > columns;
- if (use_segregation_split) {
- Opm::extractColumn(*grid->c_grid(), columns);
- }
-
- // The allcells vector is used in calls to computeTotalMobility()
- // and computeTotalMobilityOmega().
- std::vector allcells(num_cells);
- for (int cell = 0; cell < num_cells; ++cell) {
- allcells[cell] = cell;
- }
-
- // Warn if any parameters are unused.
- if (param.anyUnused()) {
- std::cout << "-------------------- Unused parameters: --------------------\n";
- param.displayUsage();
- std::cout << "----------------------------------------------------------------" << std::endl;
- }
-
- // Write parameters used for later reference.
- if (output) {
- param.writeParam(output_dir + "/spu_2p.param");
- }
-
- // Main simulation loop.
- Opm::time::StopWatch pressure_timer;
- double ptime = 0.0;
- Opm::time::StopWatch transport_timer;
- double ttime = 0.0;
- Opm::time::StopWatch total_timer;
- total_timer.start();
- std::cout << "\n\n================ Starting main simulation loop ===============" << std::endl;
- double init_satvol[2] = { 0.0 };
- double satvol[2] = { 0.0 };
- double injected[2] = { 0.0 };
- double produced[2] = { 0.0 };
- double tot_injected[2] = { 0.0 };
- double tot_produced[2] = { 0.0 };
- Opm::computeSaturatedVol(porevol, state.saturation(), init_satvol);
- std::cout << "\nInitial saturations are " << init_satvol[0]/tot_porevol_init
- << " " << init_satvol[1]/tot_porevol_init << std::endl;
- Opm::Watercut watercut;
- watercut.push(0.0, 0.0, 0.0);
- Opm::WellReport wellreport;
- Opm::WellState well_state;
- std::vector fractional_flows;
- std::vector well_resflows_phase;
- int num_wells = 0;
- if (wells->c_wells()) {
- num_wells = wells->c_wells()->number_of_wells;
- well_state.init(wells->c_wells(), state);
- well_resflows_phase.resize((wells->c_wells()->number_of_phases)*(num_wells), 0.0);
- wellreport.push(*props, *wells->c_wells(),
- state.pressure(), state.surfacevol(), state.saturation(),
- 0.0, well_state.bhp(), well_state.perfRates());
- }
- for (; !simtimer.done(); ++simtimer) {
- // Report timestep and (optionally) write state to disk.
- simtimer.report(std::cout);
- if (output && (simtimer.currentStepNum() % output_interval == 0)) {
- outputState(*grid->c_grid(), state, simtimer.currentStepNum(), output_dir);
- }
-
- // Solve pressure.
- if (check_well_controls) {
- computeFractionalFlow(*props, allcells, state.pressure(), state.surfacevol(), state.saturation(), fractional_flows);
- }
- if (check_well_controls) {
- wells->applyExplicitReinjectionControls(well_resflows_phase, well_resflows_phase);
- }
- bool well_control_passed = !check_well_controls;
- int well_control_iteration = 0;
- do { // Well control outer loop.
- pressure_timer.start();
- psolver.solve(simtimer.currentStepLength(), state, well_state);
- pressure_timer.stop();
- double pt = pressure_timer.secsSinceStart();
- std::cout << "Pressure solver took: " << pt << " seconds." << std::endl;
- ptime += pt;
-
- if (check_well_controls) {
- Opm::computePhaseFlowRatesPerWell(*wells->c_wells(),
- fractional_flows,
- well_state.perfRates(),
- well_resflows_phase);
- std::cout << "Checking well conditions." << std::endl;
- // For testing we set surface := reservoir
- well_control_passed = wells->conditionsMet(well_state.bhp(), well_resflows_phase, well_resflows_phase);
- ++well_control_iteration;
- if (!well_control_passed && well_control_iteration > max_well_control_iterations) {
- THROW("Could not satisfy well conditions in " << max_well_control_iterations << " tries.");
- }
- if (!well_control_passed) {
- std::cout << "Well controls not passed, solving again." << std::endl;
- } else {
- std::cout << "Well conditions met." << std::endl;
- }
- }
- } while (!well_control_passed);
-
- // Process transport sources (to include bdy terms and well flows).
- Opm::computeTransportSource(*grid->c_grid(), src, state.faceflux(), 1.0,
- wells->c_wells(), well_state.perfRates(), reorder_src);
-
- // Compute new porevolumes after pressure solve, if necessary.
- if (rock_comp->isActive()) {
- initial_porevol = porevol;
- computePorevolume(*grid->c_grid(), props->porosity(), *rock_comp, state.pressure(), porevol);
- }
- // Solve transport.
- transport_timer.start();
- double stepsize = simtimer.currentStepLength();
- if (num_transport_substeps != 1) {
- stepsize /= double(num_transport_substeps);
- std::cout << "Making " << num_transport_substeps << " transport substeps." << std::endl;
- }
- for (int tr_substep = 0; tr_substep < num_transport_substeps; ++tr_substep) {
- // Note that for now we do not handle rock compressibility,
- // although the transport solver should be able to.
- reorder_model.solve(&state.faceflux()[0], &state.pressure()[0],
- &porevol[0], &initial_porevol[0], &reorder_src[0], stepsize,
- state.saturation(), state.surfacevol());
- // Opm::computeInjectedProduced(*props, state.saturation(), reorder_src, stepsize, injected, produced);
- if (use_segregation_split) {
- reorder_model.solveGravity(columns,
- stepsize, state.saturation(), state.surfacevol());
- }
- }
- transport_timer.stop();
- double tt = transport_timer.secsSinceStart();
- std::cout << "Transport solver took: " << tt << " seconds." << std::endl;
- ttime += tt;
-
- // Report volume balances.
- Opm::computeSaturatedVol(porevol, state.saturation(), satvol);
- tot_injected[0] += injected[0];
- tot_injected[1] += injected[1];
- tot_produced[0] += produced[0];
- tot_produced[1] += produced[1];
- std::cout.precision(5);
- const int width = 18;
- std::cout << "\nVolume balance report (all numbers relative to total pore volume).\n";
- std::cout << " Saturated volumes: "
- << std::setw(width) << satvol[0]/tot_porevol_init
- << std::setw(width) << satvol[1]/tot_porevol_init << std::endl;
- std::cout << " Injected volumes: "
- << std::setw(width) << injected[0]/tot_porevol_init
- << std::setw(width) << injected[1]/tot_porevol_init << std::endl;
- std::cout << " Produced volumes: "
- << std::setw(width) << produced[0]/tot_porevol_init
- << std::setw(width) << produced[1]/tot_porevol_init << std::endl;
- std::cout << " Total inj volumes: "
- << std::setw(width) << tot_injected[0]/tot_porevol_init
- << std::setw(width) << tot_injected[1]/tot_porevol_init << std::endl;
- std::cout << " Total prod volumes: "
- << std::setw(width) << tot_produced[0]/tot_porevol_init
- << std::setw(width) << tot_produced[1]/tot_porevol_init << std::endl;
- std::cout << " In-place + prod - inj: "
- << std::setw(width) << (satvol[0] + tot_produced[0] - tot_injected[0])/tot_porevol_init
- << std::setw(width) << (satvol[1] + tot_produced[1] - tot_injected[1])/tot_porevol_init << std::endl;
- std::cout << " Init - now - pr + inj: "
- << std::setw(width) << (init_satvol[0] - satvol[0] - tot_produced[0] + tot_injected[0])/tot_porevol_init
- << std::setw(width) << (init_satvol[1] - satvol[1] - tot_produced[1] + tot_injected[1])/tot_porevol_init
- << std::endl;
- std::cout.precision(8);
-
- watercut.push(simtimer.currentTime() + simtimer.currentStepLength(),
- produced[0]/(produced[0] + produced[1]),
- tot_produced[0]/tot_porevol_init);
- if (wells->c_wells()) {
- wellreport.push(*props, *wells->c_wells(),
- state.pressure(), state.surfacevol(), state.saturation(),
- simtimer.currentTime() + simtimer.currentStepLength(),
- well_state.bhp(), well_state.perfRates());
- }
- }
- total_timer.stop();
-
- std::cout << "\n\n================ End of simulation ===============\n"
- << "Total time taken: " << total_timer.secsSinceStart()
- << "\n Pressure time: " << ptime
- << "\n Transport time: " << ttime << std::endl;
-
- if (output) {
- outputState(*grid->c_grid(), state, simtimer.currentStepNum(), output_dir);
- outputWaterCut(watercut, output_dir);
- if (wells->c_wells()) {
- outputWellReport(wellreport, output_dir);
- }
- }
-}