#include "config.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include int main(int argc, char** argv) try { using namespace Opm::parameter; using namespace Opm; ParameterGroup parameters(argc, argv, false); std::string file_name = parameters.getDefault ("inputdeck", "data.data"); SimulatorTimer simtimer; simtimer.init(parameters); // Read input file ParseContext parseContext; Opm::Parser parser; Opm::Deck deck = parser.parseFile(file_name , parseContext); Opm::EclipseState eclipseState(deck , parseContext); std::cout << "Done!" << std::endl; // Setup grid GridManager grid(eclipseState.getInputGrid()); // Define rock and fluid properties IncompPropertiesFromDeck incomp_properties(deck, eclipseState, *grid.c_grid()); RockCompressibility rock_comp(deck, eclipseState); // Finally handle the wells WellsManager wells(eclipseState , 0 , *grid.c_grid(), incomp_properties.permeability()); double gravity[3] = {0.0, 0.0, parameters.getDefault("gravity", 0.0)}; Opm::LinearSolverFactory linsolver(parameters); double nl_pressure_residual_tolerance = 1e-8; double nl_pressure_change_tolerance = 0.0; int nl_pressure_maxiter = 100; if (rock_comp.isActive()) { nl_pressure_residual_tolerance = parameters.getDefault("nl_pressure_residual_tolerance", 1e-8); nl_pressure_change_tolerance = parameters.getDefault("nl_pressure_change_tolerance", 1.0); // in Pascal nl_pressure_maxiter = parameters.getDefault("nl_pressure_maxiter", 10); } std::vector src; Opm::FlowBCManager bcs; // EXPERIMENT_ISTL IncompTpfa pressure_solver(*grid.c_grid(), incomp_properties, &rock_comp, linsolver, nl_pressure_residual_tolerance, nl_pressure_change_tolerance, nl_pressure_maxiter, gravity, wells.c_wells(), src, bcs.c_bcs()); std::vector all_cells; for (int i = 0; i < grid.c_grid()->number_of_cells; i++) { all_cells.push_back(i); } Opm::TwophaseState state( grid.c_grid()->number_of_cells , grid.c_grid()->number_of_faces ); initStateFromDeck(*grid.c_grid(), incomp_properties, deck, gravity[2], state); Opm::WellState well_state; well_state.init(wells.c_wells(), state); pressure_solver.solve(simtimer.currentStepLength(), state, well_state); const int np = incomp_properties.numPhases(); std::vector fractional_flows(grid.c_grid()->number_of_cells*np, 0.0); computeFractionalFlow(incomp_properties, all_cells, state.saturation(), fractional_flows); // This will be refactored into a separate function once done std::vector well_resflows(wells.c_wells()->number_of_wells*np, 0.0); computePhaseFlowRatesPerWell(*wells.c_wells(), well_state.perfRates(), fractional_flows, well_resflows); // We approximate (for _testing_ that resflows = surfaceflows) for (int wc_iter = 0; wc_iter < 10 && !wells.conditionsMet(well_state.bhp(), well_resflows, well_resflows); ++wc_iter) { std::cout << "Conditions not met for well, trying again" << std::endl; pressure_solver.solve(simtimer.currentStepLength(), state, well_state); std::cout << "Solved" << std::endl; computePhaseFlowRatesPerWell(*wells.c_wells(), well_state.perfRates(), fractional_flows, well_resflows); } #if 0 std::vector porevol; computePorevolume(*grid->c_grid(), incomp_properties, porevol); TwophaseFluid fluid(incomp_properties); TransportContextl model(fluid, *grid->c_grid(), porevol, gravity[2], true); TransportSolver tsolver(model); TransportSource* tsrc = create_transport_source(2, 2); double ssrc[] = {1.0, 0.0}; double ssink[] = {0.0, 1.0}; double zdummy[] = {0.0, 0.0}; { int well_cell_index = 0; for (int well = 0; well < wells.c_wells()->number_of_wells; ++well) { for (int cell = wells.c_wells()->well_connpos[well]; cell < wells.c_wells()->well_connpos[well + 1]; ++cell) { if (well_rate_per_cell[well_cell_index] > 0.0) { append_transport_source(well_cell_index, 2, 0, well_rate_per_cell[well_cell_index], ssrc, zdummy, tsrc); } else if (well_rate_per_cell[well_cell_index] < 0.0) { append_transport_source(well_cell_index, 2, 0, well_rate_per_cell[well_cell_index], ssink, zdummy, tsrc); } } } } tsolver.solve(*grid->c_grid(), tsrc, stepsize, ctrl, state, linsolve, rpt); Opm::computeInjectedProduced(*props, state.saturation(), src, stepsize, injected, produced); #endif return 0; } catch (const std::exception &e) { std::cerr << "Program threw an exception: " << e.what() << "\n"; throw; }