/*=========================================================================== // // File: spu_2p.cpp // // Created: 2011-10-05 10:29:01+0200 // // Authors: Ingeborg S. Ligaarden // Jostein R. Natvig // Halvor M. Nilsen // Atgeirr F. Rasmussen // Bård Skaflestad // //==========================================================================*/ /* Copyright 2011, 2012 SINTEF ICT, Applied Mathematics. Copyright 2011, 2012 Statoil ASA. This file is part of the Open Porous Media Project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #if HAVE_CONFIG_H #include "config.h" #endif // HAVE_CONFIG_H #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static void outputState(const UnstructuredGrid& grid, const Opm::TwophaseState& state, const int step, const std::string& output_dir) { // Write data in VTK format. std::ostringstream vtkfilename; vtkfilename << output_dir << "/output-" << std::setw(3) << std::setfill('0') << step << ".vtu"; std::ofstream vtkfile(vtkfilename.str().c_str()); if (!vtkfile) { THROW("Failed to open " << vtkfilename.str()); } Opm::DataMap dm; dm["saturation"] = &state.saturation(); dm["pressure"] = &state.pressure(); std::vector cell_velocity; Opm::estimateCellVelocity(grid, state.faceflux(), cell_velocity); dm["velocity"] = &cell_velocity; Opm::writeVtkData(grid, dm, vtkfile); // Write data (not grid) in Matlab format for (Opm::DataMap::const_iterator it = dm.begin(); it != dm.end(); ++it) { std::ostringstream fname; fname << output_dir << "/" << it->first << "-" << std::setw(3) << std::setfill('0') << step << ".dat"; std::ofstream file(fname.str().c_str()); if (!file) { THROW("Failed to open " << fname.str()); } const std::vector& d = *(it->second); std::copy(d.begin(), d.end(), std::ostream_iterator(file, "\n")); } } static void outputWaterCut(const Opm::Watercut& watercut, const std::string& output_dir) { // Write water cut curve. std::string fname = output_dir + "/watercut.txt"; std::ofstream os(fname.c_str()); if (!os) { THROW("Failed to open " << fname); } watercut.write(os); } static void outputWellReport(const Opm::WellReport& wellreport, const std::string& output_dir) { // Write well report. std::string fname = output_dir + "/wellreport.txt"; std::ofstream os(fname.c_str()); if (!os) { THROW("Failed to open " << fname); } wellreport.write(os); } // --------------- Types needed to define transport solver --------------- class SimpleFluid2pWrappingProps { public: SimpleFluid2pWrappingProps(const Opm::IncompPropertiesInterface& props) : props_(props), smin_(props.numCells()*props.numPhases()), smax_(props.numCells()*props.numPhases()) { if (props.numPhases() != 2) { THROW("SimpleFluid2pWrapper requires 2 phases."); } const int num_cells = props.numCells(); std::vector cells(num_cells); for (int c = 0; c < num_cells; ++c) { cells[c] = c; } props.satRange(num_cells, &cells[0], &smin_[0], &smax_[0]); } double density(int phase) const { return props_.density()[phase]; } template void mobility(int c, const Sat& s, Mob& mob, DMob& dmob) const { props_.relperm(1, &s[0], &c, &mob[0], &dmob[0]); const double* mu = props_.viscosity(); mob[0] /= mu[0]; mob[1] /= mu[1]; // Recall that we use Fortran ordering for kr derivatives, // therefore dmob[i*2 + j] is row j and column i of the // matrix. // Each row corresponds to a kr function, so which mu to // divide by also depends on the row, j. dmob[0*2 + 0] /= mu[0]; dmob[0*2 + 1] /= mu[1]; dmob[1*2 + 0] /= mu[0]; dmob[1*2 + 1] /= mu[1]; } template void pc(int c, const Sat& s, Pcap& pcap, DPcap& dpcap) const { double pcow[2]; double dpcow[4]; props_.capPress(1, &s[0], &c, pcow, dpcow); pcap = pcow[0]; ASSERT(pcow[1] == 0.0); dpcap = dpcow[0]; ASSERT(dpcow[1] == 0.0); ASSERT(dpcow[2] == 0.0); ASSERT(dpcow[3] == 0.0); } double s_min(int c) const { return smin_[2*c + 0]; } double s_max(int c) const { return smax_[2*c + 0]; } private: const Opm::IncompPropertiesInterface& props_; std::vector smin_; std::vector smax_; }; typedef SimpleFluid2pWrappingProps TwophaseFluid; typedef Opm::SinglePointUpwindTwoPhase TransportModel; using namespace Opm::ImplicitTransportDefault; typedef NewtonVectorCollection< ::std::vector > NVecColl; typedef JacobianSystem < struct CSRMatrix, NVecColl > JacSys; template class MaxNorm { public: static double norm(const Vector& v) { return AccumulationNorm ::norm(v); } }; typedef Opm::ImplicitTransport TransportSolver; // ----------------- Main program ----------------- int main(int argc, char** argv) { std::cout << "\n================ Test program for incompressible two-phase flow ===============\n\n"; Opm::parameter::ParameterGroup param(argc, argv, false); std::cout << "--------------- Reading parameters ---------------" << std::endl; // Reading various control parameters. const bool guess_old_solution = param.getDefault("guess_old_solution", false); const bool use_reorder = param.getDefault("use_reorder", true); const bool output = param.getDefault("output", true); std::string output_dir; int output_interval = 1; if (output) { output_dir = param.getDefault("output_dir", std::string("output")); // Ensure that output dir exists boost::filesystem::path fpath(output_dir); try { create_directories(fpath); } catch (...) { THROW("Creating directories failed: " << fpath); } output_interval = param.getDefault("output_interval", output_interval); } const int num_transport_substeps = param.getDefault("num_transport_substeps", 1); // If we have a "deck_filename", grid and props will be read from that. bool use_deck = param.has("deck_filename"); boost::scoped_ptr grid; boost::scoped_ptr props; boost::scoped_ptr wells; boost::scoped_ptr rock_comp; Opm::SimulatorTimer simtimer; Opm::TwophaseState state; bool check_well_controls = false; int max_well_control_iterations = 0; double gravity[3] = { 0.0 }; if (use_deck) { std::string deck_filename = param.get("deck_filename"); Opm::EclipseGridParser deck(deck_filename); // Grid init grid.reset(new Opm::GridManager(deck)); // Rock and fluid init const int* gc = grid->c_grid()->global_cell; std::vector global_cell(gc, gc + grid->c_grid()->number_of_cells); props.reset(new Opm::IncompPropertiesFromDeck(deck, global_cell)); // Wells init. wells.reset(new Opm::WellsManager(deck, *grid->c_grid(), props->permeability())); check_well_controls = param.getDefault("check_well_controls", false); max_well_control_iterations = param.getDefault("max_well_control_iterations", 10); // Timer init. if (deck.hasField("TSTEP")) { simtimer.init(deck); } else { simtimer.init(param); } // Rock compressibility. rock_comp.reset(new Opm::RockCompressibility(deck)); // Gravity. gravity[2] = deck.hasField("NOGRAV") ? 0.0 : Opm::unit::gravity; // Init state variables (saturation and pressure). if (param.has("init_saturation")) { initStateTwophaseBasic(*grid->c_grid(), *props, param, gravity[2], state); } else { initStateTwophaseFromDeck(*grid->c_grid(), *props, deck, gravity[2], state); } } else { // Grid init. const int nx = param.getDefault("nx", 100); const int ny = param.getDefault("ny", 100); const int nz = param.getDefault("nz", 1); const double dx = param.getDefault("dx", 1.0); const double dy = param.getDefault("dy", 1.0); const double dz = param.getDefault("dz", 1.0); grid.reset(new Opm::GridManager(nx, ny, nz, dx, dy, dz)); // Rock and fluid init. props.reset(new Opm::IncompPropertiesBasic(param, grid->c_grid()->dimensions, grid->c_grid()->number_of_cells)); // Wells init. wells.reset(new Opm::WellsManager()); // Timer init. simtimer.init(param); // Rock compressibility. rock_comp.reset(new Opm::RockCompressibility(param)); // Gravity. gravity[2] = param.getDefault("gravity", 0.0); // Init state variables (saturation and pressure). initStateTwophaseBasic(*grid->c_grid(), *props, param, gravity[2], state); } // Extra fluid init for transport solver. TwophaseFluid fluid(*props); // Warn if gravity but no density difference. bool use_gravity = (gravity[0] != 0.0 || gravity[1] != 0.0 || gravity[2] != 0.0); if (use_gravity) { if (props->density()[0] == props->density()[1]) { std::cout << "**** Warning: nonzero gravity, but zero density difference." << std::endl; } } bool use_segregation_split = false; bool use_column_solver = false; bool use_gauss_seidel_gravity = false; if (use_gravity && use_reorder) { use_segregation_split = param.getDefault("use_segregation_split", use_segregation_split); if (use_segregation_split) { use_column_solver = param.getDefault("use_column_solver", use_column_solver); if (use_column_solver) { use_gauss_seidel_gravity = param.getDefault("use_gauss_seidel_gravity", use_gauss_seidel_gravity); } } } // Check that rock compressibility is not used with solvers that do not handle it. int nl_pressure_maxiter = 0; double nl_pressure_tolerance = 0.0; if (rock_comp->isActive()) { if (!use_reorder) { THROW("Cannot run implicit (non-reordering) transport solver with rock compressibility yet."); } nl_pressure_maxiter = param.getDefault("nl_pressure_maxiter", 10); nl_pressure_tolerance = param.getDefault("nl_pressure_tolerance", 1.0); // in Pascal } // Source-related variables init. int num_cells = grid->c_grid()->number_of_cells; std::vector totmob; std::vector omega; // Will remain empty if no gravity. std::vector rc; // Will remain empty if no rock compressibility. // Extra rock init. std::vector porevol; if (rock_comp->isActive()) { computePorevolume(*grid->c_grid(), *props, *rock_comp, state.pressure(), porevol); } else { computePorevolume(*grid->c_grid(), *props, porevol); } double tot_porevol_init = std::accumulate(porevol.begin(), porevol.end(), 0.0); // We need a separate reorder_sat, because the reorder // code expects a scalar sw, not both sw and so. std::vector reorder_sat(num_cells); std::vector src(num_cells, 0.0); // Initialising src if (wells->c_wells()) { // Do nothing, wells will be the driving force, not source terms. // Opm::wellsToSrc(*wells->c_wells(), num_cells, src); } else { const double default_injection = use_gravity ? 0.0 : 0.1; const double flow_per_sec = param.getDefault("injected_porevolumes_per_day", default_injection) *tot_porevol_init/Opm::unit::day; src[0] = flow_per_sec; src[num_cells - 1] = -flow_per_sec; } TransportSource* tsrc = create_transport_source(2, 2); double ssrc[] = { 1.0, 0.0 }; double ssink[] = { 0.0, 1.0 }; double zdummy[] = { 0.0, 0.0 }; for (int cell = 0; cell < num_cells; ++cell) { if (src[cell] > 0.0) { append_transport_source(cell, 2, 0, src[cell], ssrc, zdummy, tsrc); } else if (src[cell] < 0.0) { append_transport_source(cell, 2, 0, src[cell], ssink, zdummy, tsrc); } } std::vector reorder_src = src; // Boundary conditions. Opm::FlowBCManager bcs; if (param.getDefault("use_pside", false)) { int pside = param.get("pside"); double pside_pressure = param.get("pside_pressure"); bcs.pressureSide(*grid->c_grid(), Opm::FlowBCManager::Side(pside), pside_pressure); } // Solvers init. // Linear solver. Opm::LinearSolverFactory linsolver(param); // Pressure solver. const double *grav = use_gravity ? &gravity[0] : 0; Opm::IncompTpfa psolver(*grid->c_grid(), props->permeability(), grav, linsolver, wells->c_wells()); // Reordering solver. const double nl_tolerance = param.getDefault("nl_tolerance", 1e-9); const int nl_maxiter = param.getDefault("nl_maxiter", 30); Opm::TransportModelTwophase reorder_model(*grid->c_grid(), *props, nl_tolerance, nl_maxiter); if (use_gauss_seidel_gravity) { reorder_model.initGravity(grav); } // Non-reordering solver. TransportModel model (fluid, *grid->c_grid(), porevol, grav, guess_old_solution); if (use_gravity) { model.initGravityTrans(*grid->c_grid(), psolver.getHalfTrans()); } TransportSolver tsolver(model); // Column-based gravity segregation solver. typedef std::pair, std::vector > > ColMap; ColMap columns; if (use_column_solver) { Opm::extractColumn(*grid->c_grid(), columns); } Opm::GravityColumnSolver colsolver(model, *grid->c_grid(), nl_tolerance, nl_maxiter); // Control init. Opm::ImplicitTransportDetails::NRReport rpt; Opm::ImplicitTransportDetails::NRControl ctrl; if (!use_reorder || use_segregation_split) { ctrl.max_it = param.getDefault("max_it", 20); ctrl.verbosity = param.getDefault("verbosity", 0); ctrl.max_it_ls = param.getDefault("max_it_ls", 5); } // Linear solver init. using Opm::ImplicitTransportLinAlgSupport::CSRMatrixUmfpackSolver; CSRMatrixUmfpackSolver linsolve; // The allcells vector is used in calls to computeTotalMobility() // and computeTotalMobilityOmega(). std::vector allcells(num_cells); for (int cell = 0; cell < num_cells; ++cell) { allcells[cell] = cell; } // Warn if any parameters are unused. if (param.anyUnused()) { std::cout << "-------------------- Unused parameters: --------------------\n"; param.displayUsage(); std::cout << "----------------------------------------------------------------" << std::endl; } // Write parameters used for later reference. if (output) { param.writeParam(output_dir + "/spu_2p.param"); } // Main simulation loop. Opm::time::StopWatch pressure_timer; double ptime = 0.0; Opm::time::StopWatch transport_timer; double ttime = 0.0; Opm::time::StopWatch total_timer; total_timer.start(); std::cout << "\n\n================ Starting main simulation loop ===============" << std::endl; double init_satvol[2] = { 0.0 }; double satvol[2] = { 0.0 }; double injected[2] = { 0.0 }; double produced[2] = { 0.0 }; double tot_injected[2] = { 0.0 }; double tot_produced[2] = { 0.0 }; Opm::computeSaturatedVol(porevol, state.saturation(), init_satvol); std::cout << "\nInitial saturations are " << init_satvol[0]/tot_porevol_init << " " << init_satvol[1]/tot_porevol_init << std::endl; Opm::Watercut watercut; watercut.push(0.0, 0.0, 0.0); Opm::WellReport wellreport; std::vector well_bhp; std::vector well_perfrates; std::vector fractional_flows; std::vector well_resflows_phase; int num_wells = 0; if (wells->c_wells()) { num_wells = wells->c_wells()->number_of_wells; well_bhp.resize(num_wells, 0.0); well_perfrates.resize(wells->c_wells()->well_connpos[num_wells], 0.0); well_resflows_phase.resize((wells->c_wells()->number_of_phases)*(wells->c_wells()->number_of_wells), 0.0); wellreport.push(*props, *wells->c_wells(), state.saturation(), 0.0, well_bhp, well_perfrates); } for (; !simtimer.done(); ++simtimer) { // Report timestep and (optionally) write state to disk. simtimer.report(std::cout); if (output && (simtimer.currentStepNum() % output_interval == 0)) { outputState(*grid->c_grid(), state, simtimer.currentStepNum(), output_dir); } // Solve pressure. if (use_gravity) { computeTotalMobilityOmega(*props, allcells, state.saturation(), totmob, omega); } else { computeTotalMobility(*props, allcells, state.saturation(), totmob); } std::vector wdp; if (wells->c_wells()) { Opm::computeWDP(*wells->c_wells(), *grid->c_grid(), state.saturation(), props->density(), gravity[2], true, wdp); } if (check_well_controls) { computeFractionalFlow(*props, allcells, state.saturation(), fractional_flows); } if (check_well_controls) { wells->applyExplicitReinjectionControls(well_resflows_phase, well_resflows_phase); } bool well_control_passed = !check_well_controls; int well_control_iteration = 0; do { pressure_timer.start(); if (rock_comp->isActive()) { rc.resize(num_cells); std::vector initial_pressure = state.pressure(); std::vector initial_porevolume(num_cells); computePorevolume(*grid->c_grid(), *props, *rock_comp, initial_pressure, initial_porevolume); std::vector pressure_increment(num_cells + num_wells); std::vector prev_pressure(num_cells + num_wells); for (int iter = 0; iter < nl_pressure_maxiter; ++iter) { for (int cell = 0; cell < num_cells; ++cell) { rc[cell] = rock_comp->rockComp(state.pressure()[cell]); } computePorevolume(*grid->c_grid(), *props, *rock_comp, state.pressure(), porevol); std::copy(state.pressure().begin(), state.pressure().end(), prev_pressure.begin()); std::copy(well_bhp.begin(), well_bhp.end(), prev_pressure.begin() + num_cells); // prev_pressure = state.pressure(); // compute pressure increment psolver.solveIncrement(totmob, omega, src, wdp, bcs.c_bcs(), porevol, rc, prev_pressure, initial_porevolume, simtimer.currentStepLength(), pressure_increment); double max_change = 0.0; for (int cell = 0; cell < num_cells; ++cell) { state.pressure()[cell] += pressure_increment[cell]; max_change = std::max(max_change, std::fabs(pressure_increment[cell])); } for (int well = 0; well < num_wells; ++well) { well_bhp[well] += pressure_increment[num_cells + well]; max_change = std::max(max_change, std::fabs(pressure_increment[num_cells + well])); } std::cout << "Pressure iter " << iter << " max change = " << max_change << std::endl; if (max_change < nl_pressure_tolerance) { break; } } psolver.computeFaceFlux(totmob, omega, src, wdp, bcs.c_bcs(), state.pressure(), state.faceflux(), well_bhp, well_perfrates); } else { psolver.solve(totmob, omega, src, wdp, bcs.c_bcs(), state.pressure(), state.faceflux(), well_bhp, well_perfrates); } pressure_timer.stop(); double pt = pressure_timer.secsSinceStart(); std::cout << "Pressure solver took: " << pt << " seconds." << std::endl; ptime += pt; if (check_well_controls) { Opm::computePhaseFlowRatesPerWell(*wells->c_wells(), fractional_flows, well_perfrates, well_resflows_phase); std::cout << "Checking well conditions." << std::endl; // For testing we set surface := reservoir well_control_passed = wells->conditionsMet(well_bhp, well_resflows_phase, well_resflows_phase); ++well_control_iteration; if (!well_control_passed && well_control_iteration > max_well_control_iterations) { THROW("Could not satisfy well conditions in " << max_well_control_iterations << " tries."); } if (!well_control_passed) { std::cout << "Well controls not passed, solving again." << std::endl; } else { std::cout << "Well conditions met." << std::endl; } } } while (!well_control_passed); // Process transport sources (to include bdy terms and well flows). Opm::computeTransportSource(*grid->c_grid(), src, state.faceflux(), 1.0, wells->c_wells(), well_perfrates, reorder_src); if (!use_reorder) { clear_transport_source(tsrc); for (int cell = 0; cell < num_cells; ++cell) { if (reorder_src[cell] > 0.0) { append_transport_source(cell, 2, 0, reorder_src[cell], ssrc, zdummy, tsrc); } else if (reorder_src[cell] < 0.0) { append_transport_source(cell, 2, 0, reorder_src[cell], ssink, zdummy, tsrc); } } } // Solve transport. transport_timer.start(); double stepsize = simtimer.currentStepLength(); if (num_transport_substeps != 1) { stepsize /= double(num_transport_substeps); std::cout << "Making " << num_transport_substeps << " transport substeps." << std::endl; } for (int tr_substep = 0; tr_substep < num_transport_substeps; ++tr_substep) { if (use_reorder) { Opm::toWaterSat(state.saturation(), reorder_sat); reorder_model.solve(&state.faceflux()[0], &porevol[0], &reorder_src[0], stepsize, &reorder_sat[0]); Opm::toBothSat(reorder_sat, state.saturation()); Opm::computeInjectedProduced(*props, state.saturation(), reorder_src, stepsize, injected, produced); if (use_segregation_split) { if (use_column_solver) { if (use_gauss_seidel_gravity) { reorder_model.solveGravity(columns, &porevol[0], stepsize, reorder_sat); Opm::toBothSat(reorder_sat, state.saturation()); } else { colsolver.solve(columns, stepsize, state.saturation()); } } else { std::vector fluxes = state.faceflux(); std::fill(state.faceflux().begin(), state.faceflux().end(), 0.0); tsolver.solve(*grid->c_grid(), tsrc, stepsize, ctrl, state, linsolve, rpt); std::cout << rpt; state.faceflux() = fluxes; } } } else { tsolver.solve(*grid->c_grid(), tsrc, stepsize, ctrl, state, linsolve, rpt); std::cout << rpt; Opm::computeInjectedProduced(*props, state.saturation(), reorder_src, stepsize, injected, produced); } } transport_timer.stop(); double tt = transport_timer.secsSinceStart(); std::cout << "Transport solver took: " << tt << " seconds." << std::endl; ttime += tt; // Report volume balances. Opm::computeSaturatedVol(porevol, state.saturation(), satvol); tot_injected[0] += injected[0]; tot_injected[1] += injected[1]; tot_produced[0] += produced[0]; tot_produced[1] += produced[1]; std::cout.precision(5); const int width = 18; std::cout << "\nVolume balance report (all numbers relative to total pore volume).\n"; std::cout << " Saturated volumes: " << std::setw(width) << satvol[0]/tot_porevol_init << std::setw(width) << satvol[1]/tot_porevol_init << std::endl; std::cout << " Injected volumes: " << std::setw(width) << injected[0]/tot_porevol_init << std::setw(width) << injected[1]/tot_porevol_init << std::endl; std::cout << " Produced volumes: " << std::setw(width) << produced[0]/tot_porevol_init << std::setw(width) << produced[1]/tot_porevol_init << std::endl; std::cout << " Total inj volumes: " << std::setw(width) << tot_injected[0]/tot_porevol_init << std::setw(width) << tot_injected[1]/tot_porevol_init << std::endl; std::cout << " Total prod volumes: " << std::setw(width) << tot_produced[0]/tot_porevol_init << std::setw(width) << tot_produced[1]/tot_porevol_init << std::endl; std::cout << " In-place + prod - inj: " << std::setw(width) << (satvol[0] + tot_produced[0] - tot_injected[0])/tot_porevol_init << std::setw(width) << (satvol[1] + tot_produced[1] - tot_injected[1])/tot_porevol_init << std::endl; std::cout << " Init - now - pr + inj: " << std::setw(width) << (init_satvol[0] - satvol[0] - tot_produced[0] + tot_injected[0])/tot_porevol_init << std::setw(width) << (init_satvol[1] - satvol[1] - tot_produced[1] + tot_injected[1])/tot_porevol_init << std::endl; std::cout.precision(8); watercut.push(simtimer.currentTime() + simtimer.currentStepLength(), produced[0]/(produced[0] + produced[1]), tot_produced[0]/tot_porevol_init); if (wells->c_wells()) { wellreport.push(*props, *wells->c_wells(), state.saturation(), simtimer.currentTime() + simtimer.currentStepLength(), well_bhp, well_perfrates); } } total_timer.stop(); std::cout << "\n\n================ End of simulation ===============\n" << "Total time taken: " << total_timer.secsSinceStart() << "\n Pressure time: " << ptime << "\n Transport time: " << ttime << std::endl; if (output) { outputState(*grid->c_grid(), state, simtimer.currentStepNum(), output_dir); outputWaterCut(watercut, output_dir); if (wells->c_wells()) { outputWellReport(wellreport, output_dir); } } destroy_transport_source(tsrc); }