// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*****************************************************************************
* Copyright (C) 2010-2013 by Andreas Lauser *
* *
* This program is free software: you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation, either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program. If not, see . *
*****************************************************************************/
/*!
* \file
* \brief Define some often used mathematical functions
*/
#ifndef OPM_MATH_HH
#define OPM_MATH_HH
#include
#include
namespace Opm
{
/*!
* \ingroup Math
* \brief Invert a linear polynomial analytically
*
* The polynomial is defined as
* \f[ p(x) = a\; x + b \f]
*
* This method Returns the number of solutions which are in the real
* numbers, i.e. 1 except if the slope of the line is 0.
*
* \param sol Container into which the solutions are written
* \param a The coefficient for the linear term
* \param b The coefficient for the constant term
*/
template
int invertLinearPolynomial(SolContainer &sol,
Scalar a,
Scalar b)
{
if (a == 0.0)
return 0;
sol[0] = -b/a;
return 1;
}
/*!
* \ingroup Math
* \brief Invert a quadratic polynomial analytically
*
* The polynomial is defined as
* \f[ p(x) = a\; x^2 + + b\;x + c \f]
*
* This method teturns the number of solutions which are in the real
* numbers. The "sol" argument contains the real roots of the parabola
* in order with the smallest root first.
*
* \param sol Container into which the solutions are written
* \param a The coefficient for the quadratic term
* \param b The coefficient for the linear term
* \param c The coefficient for the constant term
*/
template
int invertQuadraticPolynomial(SolContainer &sol,
Scalar a,
Scalar b,
Scalar c)
{
// check for a line
if (a == 0.0)
return invertLinearPolynomial(sol, b, c);
// discriminant
Scalar Delta = b*b - 4*a*c;
if (Delta < 0)
return 0; // no real roots
Delta = std::sqrt(Delta);
sol[0] = (- b + Delta)/(2*a);
sol[1] = (- b - Delta)/(2*a);
// sort the result
if (sol[0] > sol[1])
std::swap(sol[0], sol[1]);
return 2; // two real roots
}
//! \cond SKIP_THIS
template
void invertCubicPolynomialPostProcess_(SolContainer &sol,
int numSol,
Scalar a,
Scalar b,
Scalar c,
Scalar d)
{
// do one Newton iteration on the analytic solution if the
// precision is increased
for (int i = 0; i < numSol; ++i) {
Scalar x = sol[i];
Scalar fOld = d + x*(c + x*(b + x*a));
Scalar fPrime = c + x*(2*b + x*3*a);
if (fPrime == 0.0)
continue;
x -= fOld/fPrime;
Scalar fNew = d + x*(c + x*(b + x*a));
if (std::abs(fNew) < std::abs(fOld))
sol[i] = x;
}
}
//! \endcond
/*!
* \ingroup Math
* \brief Invert a cubic polynomial analytically
*
* The polynomial is defined as
* \f[ p(x) = a\; x^3 + + b\;x^3 + c\;x + d \f]
*
* This method teturns the number of solutions which are in the real
* numbers. The "sol" argument contains the real roots of the cubic
* polynomial in order with the smallest root first.
*
* \param sol Container into which the solutions are written
* \param a The coefficient for the cubic term
* \param b The coefficient for the quadratic term
* \param c The coefficient for the linear term
* \param d The coefficient for the constant term
*/
template
int invertCubicPolynomial(SolContainer *sol,
Scalar a,
Scalar b,
Scalar c,
Scalar d)
{
// reduces to a quadratic polynomial
if (a == 0)
return invertQuadraticPolynomial(sol, b, c, d);
// normalize the polynomial
b /= a;
c /= a;
d /= a;
a = 1;
// get rid of the quadratic term by subsituting x = t - b/3
Scalar p = c - b*b/3;
Scalar q = d + (2*b*b*b - 9*b*c)/27;
if (p != 0.0 && q != 0.0) {
// At this point
//
// t^3 + p*t + q = 0
//
// with p != 0 and q != 0 holds. Introducing the variables u and v
// with the properties
//
// u + v = t and 3*u*v + p = 0
//
// leads to
//
// u^3 + v^3 + q = 0 .
//
// multiplying both sides with u^3 and taking advantage of the
// fact that u*v = -p/3 leads to
//
// u^6 + q*u^3 - p^3/27 = 0
//
// Now, substituting u^3 = w yields
//
// w^2 + q*w - p^3/27 = 0
//
// This is a quadratic equation with the solutions
//
// w = -q/2 + sqrt(q^2/4 + p^3/27) and
// w = -q/2 - sqrt(q^2/4 + p^3/27)
//
// Since w is equivalent to u^3 it is sufficient to only look at
// one of the two cases. Then, there are still 2 cases: positive
// and negative discriminant.
Scalar wDisc = q*q/4 + p*p*p/27;
if (wDisc >= 0) { // the positive discriminant case:
// calculate the cube root of - q/2 + sqrt(q^2/4 + p^3/27)
Scalar u = - q/2 + std::sqrt(wDisc);
if (u < 0) u = - std::pow(-u, 1.0/3);
else u = std::pow(u, 1.0/3);
// at this point, u != 0 since p^3 = 0 is necessary in order
// for u = 0 to hold, so
sol[0] = u - p/(3*u) - b/3;
// does not produce a division by zero. the remaining two
// roots of u are rotated by +- 2/3*pi in the complex plane
// and thus not considered here
invertCubicPolynomialPostProcess_(sol, 1, a, b, c, d);
return 1;
}
else { // the negative discriminant case:
Scalar uCubedRe = - q/2;
Scalar uCubedIm = std::sqrt(-wDisc);
// calculate the cube root of - q/2 + sqrt(q^2/4 + p^3/27)
Scalar uAbs = std::pow(std::sqrt(uCubedRe*uCubedRe + uCubedIm*uCubedIm), 1.0/3);
Scalar phi = std::atan2(uCubedIm, uCubedRe)/3;
// calculate the length and the angle of the primitive root
// with the definitions from above it follows that
//
// x = u - p/(3*u) - b/3
//
// where x and u are complex numbers. Rewritten in polar form
// this is equivalent to
//
// x = |u|*e^(i*phi) - p*e^(-i*phi)/(3*|u|) - b/3 .
//
// Factoring out the e^ terms and subtracting the additional
// terms, yields
//
// x = (e^(i*phi) + e^(-i*phi))*(|u| - p/(3*|u|)) - y - b/3
//
// with
//
// y = - |u|*e^(-i*phi) + p*e^(i*phi)/(3*|u|) .
//
// The crucial observation is the fact that y is the conjugate
// of - x + b/3. This means that after taking advantage of the
// relation
//
// e^(i*phi) + e^(-i*phi) = 2*cos(phi)
//
// the equation
//
// x = 2*cos(phi)*(|u| - p / (3*|u|)) - conj(x) - 2*b/3
//
// holds. Since |u|, p, b and cos(phi) are real numbers, it
// follows that Im(x) = - Im(x) and thus Im(x) = 0. This
// implies
//
// Re(x) = x = cos(phi)*(|u| - p / (3*|u|)) - b/3 .
//
// Considering the fact that u is a cubic root, we have three
// values for phi which differ by 2/3*pi. This allows to
// calculate the three real roots of the polynomial:
for (int i = 0; i < 3; ++i) {
sol[i] = std::cos(phi)*(uAbs - p/(3*uAbs)) - b/3;
phi += 2*M_PI/3;
}
// post process the obtained solution to increase numerical
// precision
invertCubicPolynomialPostProcess_(sol, 3, a, b, c, d);
// sort the result
std::sort(sol, sol + 3);
return 3;
}
}
// Handle some (pretty unlikely) special cases required to avoid
// divisions by zero in the code above...
else if (p == 0.0 && q == 0.0) {
// t^3 = 0, i.e. triple root at t = 0
sol[0] = sol[1] = sol[2] = 0.0 - b/3;
return 3;
}
else if (p == 0.0 && q != 0.0) {
// t^3 + q = 0,
//
// i. e. single real root at t=curt(q)
Scalar t;
if (-q > 0) t = std::pow(-q, 1./3);
else t = - std::pow(q, 1./3);
sol[0] = t - b/3;
return 1;
}
assert(p != 0.0 && q == 0.0);
// t^3 + p*t = 0 = t*(t^2 + p),
//
// i. e. roots at t = 0, t^2 + p = 0
if (p > 0) {
sol[0] = 0.0 - b/3;
return 1; // only a single real root at t=0
}
// two additional real roots at t = sqrt(-p) and t = -sqrt(-p)
sol[0] = -std::sqrt(-p) - b/3;;
sol[1] = 0.0 - b/3;
sol[2] = std::sqrt(-p) - b/3;
return 3;
}
}
#endif