/* Copyright 2012 SINTEF ICT, Applied Mathematics. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #include #if HAVE_DYNAMIC_BOOST_TEST #define BOOST_TEST_DYN_LINK #endif #define NVERBOSE // to suppress our messages when throwing #define BOOST_TEST_MODULE VelocityInterpolationTest #include #include #include #include #include using namespace Opm; namespace { // Compute flux corresponding to a constant velocity vector v. void computeFlux(const UnstructuredGrid& grid, const std::vector& v, std::vector& flux) { const int dim = v.size(); assert(dim == grid.dimensions); flux.resize(grid.number_of_faces); for (int face = 0; face < grid.number_of_faces; ++face) { flux[face] = std::inner_product(v.begin(), v.end(), grid.face_normals + face*dim, 0.0); } } // Compute a linear vector function v = v0 + x*v1. void computeLinearVec(const std::vector& v0, const std::vector& v1, const std::vector& x, std::vector& v) { assert(v0.size() == v1.size() && v0.size() == x.size()); const int dim = v0.size(); v.resize(dim); for (int dd = 0; dd < dim; ++dd) { v[dd] = v0[dd] + x[dd]*v1[dd]; } } #ifdef __clang__ #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wunneeded-internal-declaration" #endif /* __clang__ */ // Compute flux corresponding to a velocity vector v = v0 + x*v1. void computeFluxLinear(const UnstructuredGrid& grid, const std::vector& v0, const std::vector& v1, std::vector& flux) { const int dim = v0.size(); assert(dim == grid.dimensions); flux.resize(grid.number_of_faces); std::vector x(dim); std::vector v(dim); for (int face = 0; face < grid.number_of_faces; ++face) { const double* fc = grid.face_centroids + face*dim; std::copy(fc, fc + dim, x.begin()); computeLinearVec(v0, v1, x, v); flux[face] = std::inner_product(v.begin(), v.end(), grid.face_normals + face*dim, 0.0); } } #ifdef __clang__ #pragma clang diagnostic pop #endif /* __clang__ */ double vectorDiff2(const std::vector& v1, const std::vector& v2) { assert(v1.size() == v2.size()); const int sz = v1.size(); double vdiff = 0.0; for (int i = 0; i < sz; ++i) { vdiff += (v1[i] - v2[i])*(v1[i] - v2[i]); } return vdiff; } } // anonymous namespace template void testConstantVelRepro2d() { // Set up 2d 1-cell cartesian case. GridManager g(1, 1); const UnstructuredGrid& grid = *g.c_grid(); std::vector v(2); v[0] = 0.12345; v[1] = -0.6789; std::vector flux; computeFlux(grid, v, flux); VelInterp vic(grid); vic.setupFluxes(&flux[0]); // Test a few points std::vector x(2); x[0] = 0.23456; x[1] = 0.87654; std::vector v_interp(2); vic.interpolate(0, &x[0], &v_interp[0]); BOOST_CHECK(vectorDiff2(v, v_interp) < 1e-12); x[0] = 0.5; x[1] = 0.5; vic.interpolate(0, &x[0], &v_interp[0]); BOOST_CHECK(vectorDiff2(v, v_interp) < 1e-12); x[0] = 1.0; x[1] = 0.5; vic.interpolate(0, &x[0], &v_interp[0]); BOOST_CHECK(vectorDiff2(v, v_interp) < 1e-12); x[0] = 1.0; x[1] = 1.0; vic.interpolate(0, &x[0], &v_interp[0]); BOOST_CHECK(vectorDiff2(v, v_interp) < 1e-12); } namespace { // Data for a pyramid. Node numbering goes // lexicographic on bottom, then top. // Face numbering goes xmin, xmax, ymin, ymax, bottom. namespace Pyramid { static int face_nodes[] = { 0, 4, 2, 3, 4, 1, 0, 1, 4, 4, 3, 2, 0, 2, 3, 1, }; static int face_nodepos[] = { 0, 3, 6, 9, 12, 16 }; static int face_cells[] = { 0, -1, 0, -1, 0, -1, 0, -1, 0, -1 }; static int cell_faces[] = { 0, 1, 2, 3, 4 }; static int cell_facepos[] = { 0, 5 }; static double node_coordinates[] = { 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 1.0 }; static double face_centroids[] = { 0, 1.0/3.0, 1.0/3.0, 2.0/3.0, 1.0/3.0, 1.0/3.0, 1.0/3.0, 0, 1.0/3.0, 1.0/3.0, 2.0/3.0, 1.0/3.0, 0.5, 0.5, 0 }; static double face_areas[] = { 0.5, std::sqrt(2.0), 0.5, std::sqrt(2.0), 1.0 }; static double face_normals[] = { -0.5000, 0, 0, 0.5000, 0, 0.5000, 0, -0.5000, 0, 0, 0.5000, 0.5000, 0, 0, -1.0000 }; static double cell_centroids[] = { 0.375, 0.375, 0.25 }; static double cell_volumes[] = { 1.0/3.0 }; } // namespace Pyramid UnstructuredGrid makePyramid() { // Make a 3d 1-cell grid, where the single cell is a pyramid. UnstructuredGrid grid; grid.dimensions = 3; grid.number_of_cells = 1; grid.number_of_faces = 5; grid.number_of_nodes = 5; grid.face_nodes = Pyramid::face_nodes; grid.face_nodepos = Pyramid::face_nodepos; grid.face_cells = Pyramid::face_cells; grid.cell_faces = Pyramid::cell_faces; grid.cell_facepos = Pyramid::cell_facepos; grid.node_coordinates = Pyramid::node_coordinates; grid.face_centroids = Pyramid::face_centroids; grid.face_areas = Pyramid::face_areas; grid.face_normals = Pyramid::face_normals; grid.cell_centroids = Pyramid::cell_centroids; grid.cell_volumes = Pyramid::cell_volumes; return grid; } } // anonymous namespace template void testConstantVelReproPyramid() { // Set up a 3d 1-cell non-cartesian case (a pyramid). UnstructuredGrid grid = makePyramid(); std::vector v(3); v[0] = 0.12345; v[1] = -0.6789; v[2] = 0.3456; std::vector flux; computeFlux(grid, v, flux); VelInterp vic(grid); vic.setupFluxes(&flux[0]); // Test a few points std::vector x(3); x[0] = 0.123; x[1] = 0.0123; x[2] = 0.213; std::vector v_interp(3); vic.interpolate(0, &x[0], &v_interp[0]); BOOST_CHECK(vectorDiff2(v, v_interp) < 1e-12); x[0] = 0.0; x[1] = 0.0; x[2] = 1.0; vic.interpolate(0, &x[0], &v_interp[0]); BOOST_CHECK(vectorDiff2(v, v_interp) < 1e-12); x[0] = 0.5; x[1] = 0.5; x[2] = 0.0; vic.interpolate(0, &x[0], &v_interp[0]); BOOST_CHECK(vectorDiff2(v, v_interp) < 1e-12); x[0] = 0.5; x[1] = 0.5; x[2] = 0.1; vic.interpolate(0, &x[0], &v_interp[0]); BOOST_CHECK(vectorDiff2(v, v_interp) < 1e-12); } namespace { // Data for an irregular 2d polygon. namespace Irreg2d { static int face_nodes[] = { 0, 1, 1, 2, 2, 3, 3, 4, 4, 0 }; static int face_nodepos[] = { 0, 2, 4, 6, 8, 10 }; static int face_cells[] = { 0, -1, 0, -1, 0, -1, 0, -1, 0, -1 }; static int cell_faces[] = { 0, 1, 2, 3, 4 }; static int cell_facepos[] = { 0, 5 }; static double node_coordinates[] = { 0, 0, 3, 0, 3, 2, 1, 3, 0, 2 }; static double face_centroids[] = { 1.5, 0, 3, 1, 2, 2.5, 0.5, 2.5, 0, 1 }; static double face_areas[] = { 3, 2, std::sqrt(5.0), std::sqrt(2.0), 2 }; static double face_normals[] = { 0, -3, 2, 0, 1, 2, -1, 1, -2, 0 }; static double cell_centroids[] = { 22.0/15.0, 19.0/15.0 }; static double cell_volumes[] = { 7.5 }; } // namespace Irreg2d UnstructuredGrid makeIrreg2d() { // Make a 2d 1-cell grid, where the single cell is a polygon. UnstructuredGrid grid; grid.dimensions = 2; grid.number_of_cells = 1; grid.number_of_faces = 5; grid.number_of_nodes = 5; grid.face_nodes = Irreg2d::face_nodes; grid.face_nodepos = Irreg2d::face_nodepos; grid.face_cells = Irreg2d::face_cells; grid.cell_faces = Irreg2d::cell_faces; grid.cell_facepos = Irreg2d::cell_facepos; grid.node_coordinates = Irreg2d::node_coordinates; grid.face_centroids = Irreg2d::face_centroids; grid.face_areas = Irreg2d::face_areas; grid.face_normals = Irreg2d::face_normals; grid.cell_centroids = Irreg2d::cell_centroids; grid.cell_volumes = Irreg2d::cell_volumes; return grid; } } // anonymous namespace template void testConstantVelReproIrreg2d() { // Set up a 2d 1-cell non-cartesian case (a pyramid). UnstructuredGrid grid = makeIrreg2d(); std::vector v(2); v[0] = 0.12345; v[1] = -0.6789; std::vector flux; computeFlux(grid, v, flux); VelInterp vic(grid); vic.setupFluxes(&flux[0]); // Test a few points std::vector x(2); x[0] = 1.2345; x[1] = 2.0123; std::vector v_interp(2); vic.interpolate(0, &x[0], &v_interp[0]); BOOST_CHECK(vectorDiff2(v, v_interp) < 1e-12); x[0] = 0.0; x[1] = 0.0; vic.interpolate(0, &x[0], &v_interp[0]); BOOST_CHECK(vectorDiff2(v, v_interp) < 1e-12); x[0] = 1.0; x[1] = 3.0; vic.interpolate(0, &x[0], &v_interp[0]); BOOST_CHECK(vectorDiff2(v, v_interp) < 1e-12); x[0] = 3.0; x[1] = 1.0; vic.interpolate(0, &x[0], &v_interp[0]); BOOST_CHECK(vectorDiff2(v, v_interp) < 1e-12); } namespace { // Data for an irregular 3d prism. namespace IrregPrism { static int face_nodes[] = { 0, 4, 2, 1, 3, 5, 0, 1, 5, 4, 2, 4, 5, 3, 2, 3, 0, 1}; static int face_nodepos[] = { 0, 3, 6, 10, 14, 18 }; static int face_cells[] = { 0, -1, 0, -1, 0, -1, 0, -1, 0, -1 }; static int cell_faces[] = { 0, 1, 2, 3, 4 }; static int cell_facepos[] = { 0, 5 }; static double node_coordinates[] = { 0, 0, 0, 2, 0, 0, 0, 1, 0, 2, 1, 0, 0, 0, 1, 1, 0, 1 }; static double face_centroids[] = { 0, 1.0/3.0, 1.0/3.0, 5.0/3.0, 1.0/3.0, 1.0/3.0, 7.0/9.0, 0, 4.0/9.0, 7.0/9.0, 5.0/9.0, 4.0/9.0, 1, 0.5, 0 }; static double face_areas[] = { 0.500000000000000, 0.707106781186548, 1.500000000000000, 2.121320343559642, 2.000000000000000 }; static double face_normals[] = { -0.500000000000000, 0, 0, 0.500000000000000, 0.000000000000000, 0.500000000000000, 0, -1.500000000000000, 0, 0, 1.500000000000000, 1.500000000000000, 0, 0, -2.000000000000000 }; static double cell_centroids[] = { 0.85, 0.35, 0.3 }; static double cell_volumes[] = { 5.0/6.0 }; } // namespace IrregPrism UnstructuredGrid makeIrregPrism() { // Make a 3d 1-cell grid, where the single cell is a prism. UnstructuredGrid grid; grid.dimensions = 3; grid.number_of_cells = 1; grid.number_of_faces = 5; grid.number_of_nodes = 6; grid.face_nodes = IrregPrism::face_nodes; grid.face_nodepos = IrregPrism::face_nodepos; grid.face_cells = IrregPrism::face_cells; grid.cell_faces = IrregPrism::cell_faces; grid.cell_facepos = IrregPrism::cell_facepos; grid.node_coordinates = IrregPrism::node_coordinates; grid.face_centroids = IrregPrism::face_centroids; grid.face_areas = IrregPrism::face_areas; grid.face_normals = IrregPrism::face_normals; grid.cell_centroids = IrregPrism::cell_centroids; grid.cell_volumes = IrregPrism::cell_volumes; return grid; } } // anonymous namespace template void testConstantVelReproIrregPrism() { // Set up a 3d 1-cell non-cartesian case (a pyramid). UnstructuredGrid grid = makeIrregPrism(); std::vector v(3); v[0] = 0.12345; v[1] = -0.6789; v[2] = 0.3456; std::vector flux; computeFlux(grid, v, flux); VelInterp vic(grid); vic.setupFluxes(&flux[0]); // Test a few points std::vector x(3); x[0] = 0.123; x[1] = 0.0123; x[2] = 0.213; std::vector v_interp(3); vic.interpolate(0, &x[0], &v_interp[0]); BOOST_CHECK(vectorDiff2(v, v_interp) < 1e-12); x[0] = 0.0; x[1] = 0.0; x[2] = 1.0; vic.interpolate(0, &x[0], &v_interp[0]); BOOST_CHECK(vectorDiff2(v, v_interp) < 1e-12); x[0] = 1.0; x[1] = 0.0; x[2] = 1.0; vic.interpolate(0, &x[0], &v_interp[0]); BOOST_CHECK(vectorDiff2(v, v_interp) < 1e-12); x[0] = 0.5; x[1] = 0.5; x[2] = 0.5; vic.interpolate(0, &x[0], &v_interp[0]); BOOST_CHECK(vectorDiff2(v, v_interp) < 1e-12); } template void testLinearVelReproIrregPrism() { // Set up a 3d 1-cell non-cartesian case (a pyramid). UnstructuredGrid grid = makeIrregPrism(); std::vector v0(3); // v0[0] = 0.12345; // v0[1] = -0.6789; // v0[2] = 0.423; v0[0] = 0.0; v0[1] = 0.0; v0[2] = 0.0; std::vector v1(3); // v1[0] = -0.1; // v1[1] = 0.454; // v1[2] = 0.21; v1[0] = 0.0; v1[1] = 0.0; v1[2] = 1.0; std::vector flux; computeFluxLinear(grid, v0, v1, flux); VelInterp vic(grid); vic.setupFluxes(&flux[0]); // Test a few points std::vector v(3); std::vector x(3); x[0] = 0.123; x[1] = 0.0123; x[2] = 0.213; computeLinearVec(v0, v1, x, v); std::vector v_interp(3); vic.interpolate(0, &x[0], &v_interp[0]); BOOST_CHECK(vectorDiff2(v, v_interp) < 1e-12); x[0] = 0.0; x[1] = 0.0; x[2] = 1.0; computeLinearVec(v0, v1, x, v); vic.interpolate(0, &x[0], &v_interp[0]); BOOST_CHECK(vectorDiff2(v, v_interp) < 1e-12); x[0] = 1.0; x[1] = 0.0; x[2] = 1.0; computeLinearVec(v0, v1, x, v); vic.interpolate(0, &x[0], &v_interp[0]); BOOST_CHECK(vectorDiff2(v, v_interp) < 1e-12); x[0] = 0.5; x[1] = 0.5; x[2] = 0.5; computeLinearVec(v0, v1, x, v); vic.interpolate(0, &x[0], &v_interp[0]); BOOST_CHECK(vectorDiff2(v, v_interp) < 1e-12); } BOOST_AUTO_TEST_CASE(test_VelocityInterpolationConstant) { testConstantVelRepro2d(); testConstantVelReproPyramid(); testConstantVelReproIrreg2d(); testConstantVelReproIrregPrism(); } BOOST_AUTO_TEST_CASE(test_VelocityInterpolationECVI) { testConstantVelRepro2d(); BOOST_CHECK_THROW(testConstantVelReproPyramid(), std::exception); testConstantVelReproIrreg2d(); testConstantVelReproIrregPrism(); // Though the interpolation has linear precision, the corner velocity // construction does not, so the below test cannot be expected to succeed. // testLinearVelReproIrregPrism(); }