// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- // vi: set et ts=4 sw=4 sts=4: /***************************************************************************** * Copyright (C) 2010-2013 by Andreas Lauser * * * * This program is free software: you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation, either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program. If not, see . * *****************************************************************************/ /*! * \file * \copydoc Opm::Spline */ #ifndef OPM_SPLINE_HH #define OPM_SPLINE_HH #include #include #include #include #include namespace Opm { /*! * \brief Class implementing cubic splines. * * This class supports full, natural, periodic and monotonic cubic * splines. * * Full a splines \f$s(x)\f$ are splines which, given \f$n\f$ sampling * points \f$x_1, \dots, x_n\f$, fulfill the following conditions * \f{align*}{ * s(x_i) & = y_i \quad \forall i \in \{1, \dots, n \} \\ * s'(x_1) & = m_1 \\ * s'(x_n) & = m_n * \f} * for any given boundary slopes \f$m_1\f$ and \f$m_n\f$. * * Natural splines which are defined by *\f{align*}{ * s(x_i) & = y_i \quad \forall i \in \{1, \dots, n \} \\ * s''(x_1) & = 0 \\ * s''(x_n) & = 0 *\f} * * For periodic splines of splines the slopes at the boundaries are identical: *\f{align*}{ * s(x_i) & = y_i \quad \forall i \in \{1, \dots, n \} \\ * s'(x_1) & = s'(x_n) \\ * s''(x_1) & = s''(x_n) \;. *\f} * * Finally, there are monotonic splines which guarantee that the curve * is confined by its sampling points, i.e., * \f[ y_i \leq s(x) \leq y_{i+1} \quad \text{for} x_i \leq x \leq x_{i+1} \;. * \f] * For more information on monotonic splines, see * http://en.wikipedia.org/wiki/Monotone_cubic_interpolation * * Full, natural and periodic splines are continuous in their first * and second derivatives, i.e., * \f[ s \in \mathcal{C}^2 * \f] * holds for such splines. Monotonic splines are only continuous up to * their first derivative, i.e., for these only * \f[ s \in \mathcal{C}^1 * \f] * is true. */ template class Spline { typedef Opm::TridiagonalMatrix Matrix; typedef std::vector Vector; public: /*! * \brief The type of the spline to be created. * * \copydetails Spline */ enum SplineType { Full, Natural, Periodic, Monotonic }; /*! * \brief Default constructor for a spline. * * To specfiy the acutal curve, use one of the set() methods. */ Spline() { } /*! * \brief Convenience constructor for a full spline with just two sampling points * * \param x0 The \f$x\f$ value of the first sampling point * \param x1 The \f$x\f$ value of the second sampling point * \param y0 The \f$y\f$ value of the first sampling point * \param y1 The \f$y\f$ value of the second sampling point * \param m0 The slope of the spline at \f$x_0\f$ * \param m1 The slope of the spline at \f$x_1\f$ */ Spline(Scalar x0, Scalar x1, Scalar y0, Scalar y1, Scalar m0, Scalar m1) { set(x0, x1, y0, y1, m0, m1); } /*! * \brief Convenience constructor for a natural or a periodic spline * * \param nSamples The number of sampling points (must be > 2) * \param x An array containing the \f$x\f$ values of the spline's sampling points * \param y An array containing the \f$y\f$ values of the spline's sampling points * \param periodic Indicates whether a natural or a periodic spline should be created */ template Spline(int nSamples, const ScalarArrayX &x, const ScalarArrayY &y, SplineType splineType = Natural, bool sortInputs = false) { this->setXYArrays(nSamples, x, y, splineType, sortInputs); } /*! * \brief Convenience constructor for a natural or a periodic spline * * \param nSamples The number of sampling points (must be > 2) * \param points An array of \f$(x,y)\f$ tuples of the spline's sampling points * \param periodic Indicates whether a natural or a periodic spline should be created */ template Spline(int nSamples, const PointArray &points, SplineType splineType = Natural, bool sortInputs = false) { this->setArrayOfPoints(nSamples, points, splineType, sortInputs); } /*! * \brief Convenience constructor for a natural or a periodic spline * * \param x An array containing the \f$x\f$ values of the spline's sampling points (must have a size() method) * \param y An array containing the \f$y\f$ values of the spline's sampling points (must have a size() method) * \param periodic Indicates whether a natural or a periodic spline should be created */ template Spline(const ScalarContainer &x, const ScalarContainer &y, SplineType splineType = Natural, bool sortInputs = false) { this->setXYContainers(x, y, splineType, sortInputs); } /*! * \brief Convenience constructor for a natural or a periodic spline * * \param points An array of \f$(x,y)\f$ tuples of the spline's sampling points (must have a size() method) * \param periodic Indicates whether a natural or a periodic spline should be created */ template Spline(const PointContainer &points, SplineType splineType = Natural, bool sortInputs = false) { this->setContainerOfPoints(points, splineType, sortInputs); } /*! * \brief Convenience constructor for a full spline * * \param nSamples The number of sampling points (must be >= 2) * \param x An array containing the \f$x\f$ values of the spline's sampling points * \param y An array containing the \f$y\f$ values of the spline's sampling points * \param m0 The slope of the spline at \f$x_0\f$ * \param m1 The slope of the spline at \f$x_n\f$ * \param sortInputs Indicates whether the sample points should be sorted (this is not necessary if they are already sorted in ascending or descending order) */ template Spline(int nSamples, const ScalarArray &x, const ScalarArray &y, Scalar m0, Scalar m1, bool sortInputs = false) { this->setXYArrays(nSamples, x, y, m0, m1, sortInputs); } /*! * \brief Convenience constructor for a full spline * * \param nSamples The number of sampling points (must be >= 2) * \param points An array containing the \f$x\f$ and \f$x\f$ values of the spline's sampling points * \param m0 The slope of the spline at \f$x_0\f$ * \param m1 The slope of the spline at \f$x_n\f$ * \param sortInputs Indicates whether the sample points should be sorted (this is not necessary if they are already sorted in ascending or descending order) */ template Spline(int nSamples, const PointArray &points, Scalar m0, Scalar m1, bool sortInputs = false) { this->setArrayOfPoints(nSamples, points, m0, m1, sortInputs); } /*! * \brief Convenience constructor for a full spline * * \param x An array containing the \f$x\f$ values of the spline's sampling points (must have a size() method) * \param y An array containing the \f$y\f$ values of the spline's sampling points (must have a size() method) * \param m0 The slope of the spline at \f$x_0\f$ * \param m1 The slope of the spline at \f$x_n\f$ * \param sortInputs Indicates whether the sample points should be sorted (this is not necessary if they are already sorted in ascending or descending order) */ template Spline(const ScalarContainerX &x, const ScalarContainerY &y, Scalar m0, Scalar m1, bool sortInputs = false) { this->setXYContainers(x, y, m0, m1, sortInputs); } /*! * \brief Convenience constructor for a full spline * * \param points An array of \f$(x,y)\f$ tuples of the spline's sampling points (must have a size() method) * \param m0 The slope of the spline at \f$x_0\f$ * \param m1 The slope of the spline at \f$x_n\f$ * \param sortInputs Indicates whether the sample points should be sorted (this is not necessary if they are already sorted in ascending or descending order) */ template Spline(const PointContainer &points, Scalar m0, Scalar m1, bool sortInputs = false) { this->setContainerOfPoints(points, m0, m1, sortInputs); } /*! * \brief Returns the number of sampling points. */ int numSamples() const { return xPos_.size(); } /*! * \brief Set the sampling points and the boundary slopes of the * spline with two sampling points. * * \param x0 The \f$x\f$ value of the first sampling point * \param x1 The \f$x\f$ value of the second sampling point * \param y0 The \f$y\f$ value of the first sampling point * \param y1 The \f$y\f$ value of the second sampling point * \param m0 The slope of the spline at \f$x_0\f$ * \param m1 The slope of the spline at \f$x_1\f$ */ void set(Scalar x0, Scalar x1, Scalar y0, Scalar y1, Scalar m0, Scalar m1) { slopeVec_.resize(2); xPos_.resize(2); yPos_.resize(2); if (x0 > x1) { xPos_[0] = x1; xPos_[1] = x0; yPos_[0] = y1; yPos_[1] = y0; } else { xPos_[0] = x0; xPos_[1] = x1; yPos_[0] = y0; yPos_[1] = y1; } slopeVec_[0] = m0; slopeVec_[1] = m1; Matrix M(numSamples()); Vector d(numSamples()); Vector moments(numSamples()); this->makeFullSystem_(M, d, m0, m1); // solve for the moments M.solve(moments, d); this->setSlopesFromMoments_(slopeVec_, moments); } /////////////////////////////////////// /////////////////////////////////////// /////////////////////////////////////// // Full splines // /////////////////////////////////////// /////////////////////////////////////// /////////////////////////////////////// /*! * \brief Set the sampling points and the boundary slopes of a * full spline using C-style arrays. * * This method uses separate array-like objects for the values of * the X and Y coordinates. In this context 'array-like' means * that an access to the members is provided via the [] * operator. (e.g. C arrays, std::vector, std::array, etc.) Each * array must be of size 'nSamples' at least. Also, the number of * sampling points must be larger than 1. */ template void setXYArrays(int nSamples, const ScalarArrayX &x, const ScalarArrayY &y, Scalar m0, Scalar m1, bool sortInputs = false) { assert(nSamples > 1); setNumSamples_(nSamples); for (int i = 0; i < nSamples; ++i) { xPos_[i] = x[i]; yPos_[i] = y[i]; } if (sortInputs) sortInput_(); else if (xPos_[0] > xPos_[numSamples() - 1]) reverseSamplingPoints_(); makeFullSpline_(m0, m1); } /*! * \brief Set the sampling points and the boundary slopes of a * full spline using STL-compatible containers. * * This method uses separate STL-compatible containers for the * values of the sampling points' X and Y * coordinates. "STL-compatible" means that the container provides * access to iterators using the begin(), end() methods and also * provides a size() method. Also, the number of entries in the X * and the Y containers must be equal and larger than 1. */ template void setXYContainers(const ScalarContainerX &x, const ScalarContainerY &y, Scalar m0, Scalar m1, bool sortInputs = false) { assert(x.size() == y.size()); assert(x.size() > 1); setNumSamples_(x.size()); std::copy(x.begin(), x.end(), xPos_.begin()); std::copy(y.begin(), y.end(), yPos_.begin()); if (sortInputs) sortInput_(); else if (xPos_[0] > xPos_[numSamples() - 1]) reverseSamplingPoints_(); makeFullSpline_(m0, m1); } /*! * \brief Set the sampling points and the boundary slopes of a * full spline using a C-style array. * * This method uses a single array of sampling points, which are * seen as an array-like object which provides access to the X and * Y coordinates. In this context 'array-like' means that an * access to the members is provided via the [] operator. (e.g. C * arrays, std::vector, std::array, etc.) The array containing * the sampling points must be of size 'nSamples' at least. Also, * the number of sampling points must be larger than 1. */ template void setArrayOfPoints(int nSamples, const PointArray &points, Scalar m0, Scalar m1, bool sortInputs = false) { // a spline with no or just one sampling points? what an // incredible bad idea! assert(nSamples > 1); setNumSamples_(nSamples); for (int i = 0; i < nSamples; ++i) { xPos_[i] = points[i][0]; yPos_[i] = points[i][1]; } if (sortInputs) sortInput_(); else if (xPos_[0] > xPos_[numSamples() - 1]) reverseSamplingPoints_(); makeFullSpline_(m0, m1); } /*! * \brief Set the sampling points and the boundary slopes of a * full spline using a STL-compatible container of * array-like objects. * * This method uses a single STL-compatible container of sampling * points, which are assumed to be array-like objects storing the * X and Y coordinates. "STL-compatible" means that the container * provides access to iterators using the begin(), end() methods * and also provides a size() method. Also, the number of entries * in the X and the Y containers must be equal and larger than 1. */ template void setContainerOfPoints(const XYContainer &points, Scalar m0, Scalar m1, bool sortInputs = false) { // a spline with no or just one sampling points? what an // incredible bad idea! assert(points.size() > 1); setNumSamples_(points.size()); typename XYContainer::const_iterator it = points.begin(); typename XYContainer::const_iterator endIt = points.end(); for (int i = 0; it != endIt; ++i, ++it) { xPos_[i] = (*it)[0]; yPos_[i] = (*it)[1]; } if (sortInputs) sortInput_(); else if (xPos_[0] > xPos_[numSamples() - 1]) reverseSamplingPoints_(); // make a full spline makeFullSpline_(m0, m1); } /*! * \brief Set the sampling points and the boundary slopes of a * full spline using a STL-compatible container of * tuple-like objects. * * This method uses a single STL-compatible container of sampling * points, which are assumed to be tuple-like objects storing the * X and Y coordinates. "tuple-like" means that the objects * provide access to the x values via std::get<0>(obj) and to the * y value via std::get<1>(obj) (e.g. std::tuple or * std::pair). "STL-compatible" means that the container provides * access to iterators using the begin(), end() methods and also * provides a size() method. Also, the number of entries in the X * and the Y containers must be equal and larger than 1. */ template void setContainerOfTuples(const XYContainer &points, Scalar m0, Scalar m1, bool sortInputs = false) { // resize internal arrays setNumSamples_(points.size()); typename XYContainer::const_iterator it = points.begin(); typename XYContainer::const_iterator endIt = points.end(); for (int i = 0; it != endIt; ++i, ++it) { xPos_[i] = std::get<0>(*it); yPos_[i] = std::get<1>(*it); } if (sortInputs) sortInput_(); else if (xPos_[0] > xPos_[numSamples() - 1]) reverseSamplingPoints_(); // make a full spline makeFullSpline_(m0, m1); } /////////////////////////////////////// /////////////////////////////////////// /////////////////////////////////////// // Natural/Periodic splines // /////////////////////////////////////// /////////////////////////////////////// /////////////////////////////////////// /*! * \brief Set the sampling points natural spline using C-style arrays. * * This method uses separate array-like objects for the values of * the X and Y coordinates. In this context 'array-like' means * that an access to the members is provided via the [] * operator. (e.g. C arrays, std::vector, std::array, etc.) Each * array must be of size 'nSamples' at least. Also, the number of * sampling points must be larger than 1. */ template void setXYArrays(int nSamples, const ScalarArrayX &x, const ScalarArrayY &y, SplineType splineType = Natural, bool sortInputs = false) { assert(nSamples > 1); setNumSamples_(nSamples); for (int i = 0; i < nSamples; ++i) { xPos_[i] = x[i]; yPos_[i] = y[i]; } if (sortInputs) sortInput_(); else if (xPos_[0] > xPos_[numSamples() - 1]) reverseSamplingPoints_(); if (splineType == Periodic) makePeriodicSpline_(); else if (splineType == Natural) makeNaturalSpline_(); else if (splineType == Monotonic) this->makeMonotonicSpline_(slopeVec_); else OPM_THROW(std::runtime_error, "Spline type " << splineType << " not supported at this place"); } /*! * \brief Set the sampling points of a natural spline using * STL-compatible containers. * * This method uses separate STL-compatible containers for the * values of the sampling points' X and Y * coordinates. "STL-compatible" means that the container provides * access to iterators using the begin(), end() methods and also * provides a size() method. Also, the number of entries in the X * and the Y containers must be equal and larger than 1. */ template void setXYContainers(const ScalarContainerX &x, const ScalarContainerY &y, SplineType splineType = Natural, bool sortInputs = false) { assert(x.size() == y.size()); assert(x.size() > 1); setNumSamples_(x.size()); std::copy(x.begin(), x.end(), xPos_.begin()); std::copy(y.begin(), y.end(), yPos_.begin()); if (sortInputs) sortInput_(); else if (xPos_[0] > xPos_[numSamples() - 1]) reverseSamplingPoints_(); if (splineType == Periodic) makePeriodicSpline_(); else if (splineType == Natural) makeNaturalSpline_(); else if (splineType == Monotonic) this->makeMonotonicSpline_(slopeVec_); else OPM_THROW(std::runtime_error, "Spline type " << splineType << " not supported at this place"); } /*! * \brief Set the sampling points of a natural spline using a * C-style array. * * This method uses a single array of sampling points, which are * seen as an array-like object which provides access to the X and * Y coordinates. In this context 'array-like' means that an * access to the members is provided via the [] operator. (e.g. C * arrays, std::vector, std::array, etc.) The array containing * the sampling points must be of size 'nSamples' at least. Also, * the number of sampling points must be larger than 1. */ template void setArrayOfPoints(int nSamples, const PointArray &points, SplineType splineType = Natural, bool sortInputs = false) { // a spline with no or just one sampling points? what an // incredible bad idea! assert(nSamples > 1); setNumSamples_(nSamples); for (int i = 0; i < nSamples; ++i) { xPos_[i] = points[i][0]; yPos_[i] = points[i][1]; } if (sortInputs) sortInput_(); else if (xPos_[0] > xPos_[numSamples() - 1]) reverseSamplingPoints_(); if (splineType == Periodic) makePeriodicSpline_(); else if (splineType == Natural) makeNaturalSpline_(); else if (splineType == Monotonic) this->makeMonotonicSpline_(slopeVec_); else OPM_THROW(std::runtime_error, "Spline type " << splineType << " not supported at this place"); } /*! * \brief Set the sampling points of a natural spline using a * STL-compatible container of array-like objects. * * This method uses a single STL-compatible container of sampling * points, which are assumed to be array-like objects storing the * X and Y coordinates. "STL-compatible" means that the container * provides access to iterators using the begin(), end() methods * and also provides a size() method. Also, the number of entries * in the X and the Y containers must be equal and larger than 1. */ template void setContainerOfPoints(const XYContainer &points, SplineType splineType = Natural, bool sortInputs = false) { // a spline with no or just one sampling points? what an // incredible bad idea! assert(points.size() > 1); setNumSamples_(points.size()); typename XYContainer::const_iterator it = points.begin(); typename XYContainer::const_iterator endIt = points.end(); for (int i = 0; it != endIt; ++ i, ++it) { xPos_[i] = (*it)[0]; yPos_[i] = (*it)[1]; } if (sortInputs) sortInput_(); else if (xPos_[0] > xPos_[numSamples() - 1]) reverseSamplingPoints_(); if (splineType == Periodic) makePeriodicSpline_(); else if (splineType == Natural) makeNaturalSpline_(); else if (splineType == Monotonic) this->makeMonotonicSpline_(slopeVec_); else OPM_THROW(std::runtime_error, "Spline type " << splineType << " not supported at this place"); } /*! * \brief Set the sampling points of a natural spline using a * STL-compatible container of tuple-like objects. * * This method uses a single STL-compatible container of sampling * points, which are assumed to be tuple-like objects storing the * X and Y coordinates. "tuple-like" means that the objects * provide access to the x values via std::get<0>(obj) and to the * y value via std::get<1>(obj) (e.g. std::tuple or * std::pair). "STL-compatible" means that the container provides * access to iterators using the begin(), end() methods and also * provides a size() method. Also, the number of entries in the X * and the Y containers must be equal and larger than 1. */ template void setContainerOfTuples(const XYContainer &points, SplineType splineType = Natural, bool sortInputs = false) { // resize internal arrays setNumSamples_(points.size()); typename XYContainer::const_iterator it = points.begin(); typename XYContainer::const_iterator endIt = points.end(); for (int i = 0; it != endIt; ++i, ++it) { xPos_[i] = std::get<0>(*it); yPos_[i] = std::get<1>(*it); } if (sortInputs) sortInput_(); else if (xPos_[0] > xPos_[numSamples() - 1]) reverseSamplingPoints_(); if (splineType == Periodic) makePeriodicSpline_(); else if (splineType == Natural) makeNaturalSpline_(); else if (splineType == Monotonic) this->makeMonotonicSpline_(slopeVec_); else OPM_THROW(std::runtime_error, "Spline type " << splineType << " not supported at this place"); } /*! * \brief Return true iff the given x is in range [x1, xn]. */ bool applies(Scalar x) const { return x_(0) <= x && x <= x_(numSamples() - 1); } /*! * \brief Return the x value of the leftmost sampling point. */ Scalar xMin() const { return x_(0); } /*! * \brief Return the x value of the rightmost sampling point. */ Scalar xMax() const { return x_(numSamples() - 1); } /*! * \brief Prints k tuples of the format (x, y, dx/dy, isMonotonic) * to stdout. * * If the spline does not apply for parts of [x0, x1] it is * extrapolated using a straight line. The result can be inspected * using the following commands: * ----------- snip ----------- ./yourProgramm > spline.csv gnuplot gnuplot> plot "spline.csv" using 1:2 w l ti "Curve", \ "spline.csv" using 1:3 w l ti "Derivative", \ "spline.csv" using 1:4 w p ti "Monotonic" ----------- snap ----------- */ void printCSV(Scalar xi0, Scalar xi1, int k, std::ostream &os = std::cout) const { Scalar x0 = std::min(xi0, xi1); Scalar x1 = std::max(xi0, xi1); const int n = numSamples() - 1; for (int i = 0; i <= k; ++i) { double x = i*(x1 - x0)/k + x0; double x_p1 = x + (x1 - x0)/k; double y; double dy_dx; double mono = 1; if (!applies(x)) { if (x < x_(0)) { dy_dx = evalDerivative(x_(0)); y = (x - x_(0))*dy_dx + y_(0); mono = (dy_dx>0)?1:-1; } else if (x > x_(n)) { dy_dx = evalDerivative(x_(n)); y = (x - x_(n))*dy_dx + y_(n); mono = (dy_dx>0)?1:-1; } else { OPM_THROW(std::runtime_error, "The sampling points given to a spline must be sorted by their x value!"); } } else { y = eval(x); dy_dx = evalDerivative(x); mono = monotonic(std::max(x_(0), x), std::min(x_(n), x_p1)); } os << x << " " << y << " " << dy_dx << " " << mono << "\n"; } } /*! * \brief Evaluate the spline at a given position. * * \param x The value on the abscissa where the spline ought to be * evaluated * \param extrapolate If this parameter is set to true, the spline * will be extended beyond its range by * straight lines, if false calling extrapolate * for \f$ x \not [x_{min}, x_{max}]\f$ will * cause a failed assertation. */ Scalar eval(Scalar x, bool extrapolate=false) const { assert(extrapolate || applies(x)); // handle extrapolation if (extrapolate) { if (x < xMin()) { Scalar m = evalDerivative(xMin(), /*segmentIdx=*/0); Scalar y0 = y_(0); return y0 + m*(x - xMin()); } else if (x > xMax()) { Scalar m = evalDerivative(xMax(), /*segmentIdx=*/numSamples()-2); Scalar y0 = y_(numSamples() - 1); return y0 + m*(x - xMax()); } } return eval_(x, segmentIdx_(x)); } /*! * \brief Evaluate the spline's derivative at a given position. * * \param x The value on the abscissa where the spline's * derivative ought to be evaluated * * \param extrapolate If this parameter is set to true, the spline * will be extended beyond its range by * straight lines, if false calling extrapolate * for \f$ x \not [x_{min}, x_{max}]\f$ will * cause a failed assertation. */ Scalar evalDerivative(Scalar x, bool extrapolate=false) const { assert(extrapolate || applies(x)); if (extrapolate) { if (x < xMin()) evalDerivative_(xMin(), 0); else if (x > xMax()) evalDerivative_(xMax(), numSamples() - 2); } return evalDerivative_(x, segmentIdx_(x)); } /*! * \brief Evaluate the spline's second derivative at a given position. * * \param x The value on the abscissa where the spline's * derivative ought to be evaluated * * \param extrapolate If this parameter is set to true, the spline * will be extended beyond its range by * straight lines, if false calling extrapolate * for \f$ x \not [x_{min}, x_{max}]\f$ will * cause a failed assertation. */ Scalar evalSecondDerivative(Scalar x, bool extrapolate=false) const { assert(extrapolate || applies(x)); if (extrapolate) return 0.0; return evalDerivative2_(x, segmentIdx_(x)); } /*! * \brief Find the intersections of the spline with a cubic * polynomial in the whole intervall, throws * Opm::MathError exception if there is more or less than * one solution. */ Scalar intersect(Scalar a, Scalar b, Scalar c, Scalar d) const { return intersectIntervall(xMin(), xMax(), a, b, c, d); } /*! * \brief Find the intersections of the spline with a cubic * polynomial in a sub-intervall of the spline, throws * Opm::MathError exception if there is more or less than * one solution. */ Scalar intersectInterval(Scalar x0, Scalar x1, Scalar a, Scalar b, Scalar c, Scalar d) const { assert(applies(x0) && applies(x1)); Scalar tmpSol[3]; int nSol = 0; int iFirst = segmentIdx_(x0); int iLast = segmentIdx_(x1); for (int i = iFirst; i <= iLast; ++i) { nSol += intersectSegment_(tmpSol, i, a, b, c, d, x0, x1); if (nSol > 1) { OPM_THROW(std::runtime_error, "Spline has more than one intersection"); //< x1) std::swap(x0, x1); assert(x0 < x1); int i = segmentIdx_(x0); if (x_(i + 1) < x1) // interval is fully contained within a single spline // segment return monotonic_(i, x0, x1); int iEnd = segmentIdx_(x1); // make sure that the segments which are completly in the // interval [x0, x1] all exhibit the same monotonicity. int r = monotonic_(i, x0, x_(i + 1)); for (++i; i < iEnd - 1; ++i) { int nextR = monotonic_(i, x_(i), x_(i + 1)); if (nextR == 3) // spline is constant continue; if (r == 3) r = nextR; if (r != nextR) return 0; } // check for the last segment if (x_(iEnd) < x1) { int lastR = monotonic_(iEnd, x_(iEnd), x1); if (lastR != 3 && r != 3 && r != lastR) return 0; } return r; } /*! * \brief Same as monotonic(x0, x1), but with the entire range of the * spline as interval. */ int monotonic() const { return monotonic(xMin(), xMax()); } protected: /*! * \brief Helper class needed to sort the input sampling points. */ struct ComparatorX_ { ComparatorX_(const std::vector &x) : x_(x) {}; bool operator ()(int idxA, int idxB) const { return x_.at(idxA) < x_.at(idxB); } const std::vector &x_; }; /*! * \brief Sort the sample points in ascending order of their x value. */ void sortInput_() { int n = numSamples(); // create a vector containing 0...n-1 std::vector idxVector(n); for (int i = 0; i < n; ++i) idxVector[i] = i; // sort the indices according to the x values of the sample // points ComparatorX_ cmp(xPos_); std::sort(idxVector.begin(), idxVector.end(), cmp); // reorder the sample points std::vector tmpX(n), tmpY(n); for (int i = 0; i < idxVector.size(); ++ i) { tmpX[i] = xPos_[idxVector[i]]; tmpY[i] = yPos_[idxVector[i]]; } xPos_ = tmpX; yPos_ = tmpY; } /*! * \brief Reverse order of the elements in the arrays which * contain the sampling points. */ void reverseSamplingPoints_() { // reverse the arrays int n = numSamples(); for (int i = 0; i <= (n - 1)/2; ++i) { std::swap(xPos_[i], xPos_[n - i - 1]); std::swap(yPos_[i], yPos_[n - i - 1]); } } /*! * \brief Resizes the internal vectors to store the sample points. */ void setNumSamples_(int nSamples) { xPos_.resize(nSamples); yPos_.resize(nSamples); slopeVec_.resize(nSamples); } /*! * \brief Create a natural spline from the already set sampling points. * * This creates a temporary matrix and right hand side vector. */ void makeFullSpline_(Scalar m0, Scalar m1) { Matrix M(numSamples()); std::vector d(numSamples()); std::vector moments(numSamples()); // create linear system of equations this->makeFullSystem_(M, d, m0, m1); // solve for the moments (-> second derivatives) M.solve(moments, d); // convert the moments to slopes at the sample points this->setSlopesFromMoments_(slopeVec_, moments); } /*! * \brief Create a natural spline from the already set sampling points. * * This creates a temporary matrix and right hand side vector. */ void makeNaturalSpline_() { Matrix M(numSamples(), numSamples()); Vector d(numSamples()); Vector moments(numSamples()); // create linear system of equations this->makeNaturalSystem_(M, d); // solve for the moments (-> second derivatives) M.solve(moments, d); // convert the moments to slopes at the sample points this->setSlopesFromMoments_(slopeVec_, moments); } /*! * \brief Create a periodic spline from the already set sampling points. * * This creates a temporary matrix and right hand side vector. */ void makePeriodicSpline_() { Matrix M(numSamples() - 1); Vector d(numSamples() - 1); Vector moments(numSamples() - 1); // create linear system of equations. This is a bit hacky, // because it assumes that std::vector internally stores its // data as a big C-style array, but it saves us from yet // another copy operation this->makePeriodicSystem_(M, d); // solve for the moments (-> second derivatives) M.solve(moments, d); moments.resize(numSamples()); for (int i = numSamples() - 2; i >= 0; --i) moments[i+1] = moments[i]; moments[0] = moments[numSamples() - 1]; // convert the moments to slopes at the sample points this->setSlopesFromMoments_(slopeVec_, moments); } /*! * \brief Set the sampling point vectors. * * This takes care that the order of the x-values is ascending, * although the input must be ordered already! */ template void assignSamplingPoints_(DestVector &destX, DestVector &destY, const SourceVector &srcX, const SourceVector &srcY, int numSamples) { assert(numSamples >= 2); // copy sample points, make sure that the first x value is // smaller than the last one for (int i = 0; i < numSamples; ++i) { int idx = i; if (srcX[0] > srcX[numSamples - 1]) idx = numSamples - i - 1; destX[i] = srcX[idx]; destY[i] = srcY[idx]; } } template void assignFromArrayList_(DestVector &destX, DestVector &destY, const ListIterator &srcBegin, const ListIterator &srcEnd, int numSamples) { assert(numSamples >= 2); // find out wether the x values are in reverse order ListIterator it = srcBegin; ++it; bool reverse = false; if ((*srcBegin)[0] > (*it)[0]) reverse = true; --it; // loop over all sampling points for (int i = 0; it != srcEnd; ++i, ++it) { int idx = i; if (reverse) idx = numSamples - i - 1; destX[i] = (*it)[0]; destY[i] = (*it)[1]; } } /*! * \brief Set the sampling points. * * Here we assume that the elements of the source vector have an * [] operator where v[0] is the x value and v[1] is the y value * if the sampling point. */ template void assignFromTupleList_(DestVector &destX, DestVector &destY, ListIterator srcBegin, ListIterator srcEnd, int numSamples) { assert(numSamples >= 2); // copy sample points, make sure that the first x value is // smaller than the last one // find out wether the x values are in reverse order ListIterator it = srcBegin; ++it; bool reverse = false; if (std::get<0>(*srcBegin) > std::get<0>(*it)) reverse = true; --it; // loop over all sampling points for (int i = 0; it != srcEnd; ++i, ++it) { int idx = i; if (reverse) idx = numSamples - i - 1; destX[i] = std::get<0>(*it); destY[i] = std::get<1>(*it); } } /*! * \brief Make the linear system of equations Mx = d which results * in the moments of the full spline. */ template void makeFullSystem_(Matrix &M, Vector &d, Scalar m0, Scalar m1) { makeNaturalSystem_(M, d); int n = numSamples() - 1; // first row M[0][1] = 1; d[0] = 6/h_(1) * ( (y_(1) - y_(0))/h_(1) - m0); // last row M[n][n - 1] = 1; // right hand side d[n] = 6/h_(n) * (m1 - (y_(n) - y_(n - 1))/h_(n)); } /*! * \brief Make the linear system of equations Mx = d which results * in the moments of the natural spline. */ template void makeNaturalSystem_(Matrix &M, Vector &d) { M = 0.0; // See: J. Stoer: "Numerische Mathematik 1", 9th edition, // Springer, 2005, p. 111 const int n = numSamples() - 1; // second to next to last rows for (int i = 1; i < n; ++i) { Scalar lambda_i = h_(i + 1) / (h_(i) + h_(i + 1)); Scalar mu_i = 1 - lambda_i; Scalar d_i = 6 / (h_(i) + h_(i + 1)) * ( (y_(i + 1) - y_(i))/h_(i + 1) - (y_(i) - y_(i - 1))/h_(i)); M[i][i-1] = mu_i; M[i][i] = 2; M[i][i + 1] = lambda_i; d[i] = d_i; }; // See Stroer, equation (2.5.2.7) Scalar lambda_0 = 0; Scalar d_0 = 0; Scalar mu_n = 0; Scalar d_n = 0; // first row M[0][0] = 2; M[0][1] = lambda_0; d[0] = d_0; // last row M[n][n-1] = mu_n; M[n][n] = 2; d[n] = d_n; } /*! * \brief Make the linear system of equations Mx = d which results * in the moments of the periodic spline. */ template void makePeriodicSystem_(Matrix &M, Vector &d) { M = 0.0; // See: J. Stoer: "Numerische Mathematik 1", 9th edition, // Springer, 2005, p. 111 const int n = numSamples() - 1; assert(M.rows() == n); // second to next to last rows for (int i = 2; i < n; ++i) { Scalar lambda_i = h_(i + 1) / (h_(i) + h_(i + 1)); Scalar mu_i = 1 - lambda_i; Scalar d_i = 6 / (h_(i) + h_(i + 1)) * ( (y_(i + 1) - y_(i))/h_(i + 1) - (y_(i) - y_(i - 1))/h_(i)); M[i-1][i-2] = mu_i; M[i-1][i-1] = 2; M[i-1][i] = lambda_i; d[i-1] = d_i; }; Scalar lambda_n = h_(1) / (h_(n) + h_(1)); Scalar lambda_1 = h_(2) / (h_(1) + h_(2));; Scalar mu_1 = 1 - lambda_1; Scalar mu_n = 1 - lambda_n; Scalar d_1 = 6 / (h_(1) + h_(2)) * ( (y_(2) - y_(1))/h_(2) - (y_(1) - y_(0))/h_(1)); Scalar d_n = 6 / (h_(n) + h_(1)) * ( (y_(1) - y_(n))/h_(1) - (y_(n) - y_(n-1))/h_(n)); // first row M[0][0] = 2; M[0][1] = lambda_1; M[0][n-1] = mu_1; d[0] = d_1; // last row M[n-1][0] = lambda_n; M[n-1][n-2] = mu_n; M[n-1][n-1] = 2; d[n-1] = d_n; } /*! * \brief Create a monotonic spline from the already set sampling points. * * This code is inspired by opm-core's "MonotCubicInterpolator" * class and also uses the approach by Fritsch and Carlson, see * * http://en.wikipedia.org/wiki/Monotone_cubic_interpolation */ template void makeMonotonicSpline_(Vector &slopes) { auto n = numSamples(); std::vector delta(n); for (int k = 0; k < n - 1; ++k) { delta[k] = (y_(k + 1) - y_(k))/(x_(k + 1) - x_(k)); } delta[n - 1] = delta[n - 2]; // calculate the "raw" slopes at the sample points for (int k = 0; k < n - 1; ++k) slopes[k] = (delta[k] + delta[k + 1])/2; slopes[n - 1] = delta[n - 2]; // post-process the "raw" slopes at the sample points for (int k = 0; k < n - 1; ++k) { if (std::abs(delta[k]) < 1e-20) { // make the spline flat if the inputs are equal slopes[k] = 0; slopes[k + 1] = 0; ++ k; continue; } Scalar alpha = slopes[k] / delta[k]; Scalar beta = slopes[k + 1] / delta[k]; if (k > 0) { // check if the inputs are not montonous. if yes, make // x[k] a local extremum. if (delta[k]*delta[k - 1] < 0) { slopes[k] = 0; continue; } } // limit (alpha, beta) to a circle of radius 3 if (alpha*alpha + beta*beta > 3*3) { Scalar tau = 3.0/std::sqrt(alpha*alpha + beta*beta); slopes[k] = tau*alpha*delta[k]; slopes[k + 1] = tau*beta*delta[k]; } } } /*! * \brief Convert the moments at the sample points to slopes. * * This requires to use cubic Hermite interpolation, but it is * required because for monotonic splines the second derivative is * not continuous. */ template void setSlopesFromMoments_(SlopeVector &slopes, const MomentsVector &moments) { int n = numSamples(); // evaluate slope at the rightmost point. // See: J. Stoer: "Numerische Mathematik 1", 9th edition, // Springer, 2005, p. 109 Scalar mRight; { Scalar h = this->h_(n - 1); Scalar x = h; //Scalar x_1 = 0; Scalar A = (y_(n - 1) - y_(n - 2))/h - h/6*(moments[n-1] - moments[n - 2]); mRight = //- moments[n - 2] * x_1*x_1 / (2 * h) //+ moments[n - 1] * x*x / (2 * h) + A; } // evaluate the slope for the first n-1 sample points for (int i = 0; i < n - 1; ++ i) { // See: J. Stoer: "Numerische Mathematik 1", 9th edition, // Springer, 2005, p. 109 Scalar h_i = this->h_(i + 1); //Scalar x_i = 0; Scalar x_i1 = h_i; Scalar A_i = (y_(i+1) - y_(i))/h_i - h_i/6*(moments[i+1] - moments[i]); slopes[i] = - moments[i] * x_i1*x_i1 / (2 * h_i) + //moments[i + 1] * x_i*x_i / (2 * h_i) //+ A_i; } slopes[n - 1] = mRight; } // evaluate the spline at a given the position and given the // segment index Scalar eval_(Scalar x, int i) const { // See http://en.wikipedia.org/wiki/Cubic_Hermite_spline Scalar delta = h_(i + 1); Scalar t = (x - x_(i))/delta; return h00_(t) * y_(i) + h10_(t) * slope_(i)*delta + h01_(t) * y_(i + 1) + h11_(t) * slope_(i + 1)*delta; } // evaluate the derivative of a spline given the actual position // and the segment index Scalar evalDerivative_(Scalar x, int i) const { // See http://en.wikipedia.org/wiki/Cubic_Hermite_spline Scalar delta = h_(i + 1); Scalar t = (x - x_(i))/delta; Scalar alpha = 1 / delta; return alpha * (h00_prime_(t) * y_(i) + h10_prime_(t) * slope_(i)*delta + h01_prime_(t) * y_(i + 1) + h11_prime_(t) * slope_(i + 1)*delta); } // evaluate the second derivative of a spline given the actual // position and the segment index Scalar evalDerivative2_(Scalar x, int i) const { // See http://en.wikipedia.org/wiki/Cubic_Hermite_spline Scalar delta = h_(i + 1); Scalar t = (x - x_(i))/delta; Scalar alpha = 1 / delta; return alpha *(h00_prime2_(t) * y_(i) + h10_prime2_(t) * slope_(i)*delta + h01_prime2_(t) * y_(i + 1) + h11_prime2_(t) * slope_(i + 1)*delta); } // evaluate the third derivative of a spline given the actual // position and the segment index Scalar evalDerivative3_(Scalar x, int i) const { // See http://en.wikipedia.org/wiki/Cubic_Hermite_spline Scalar t = (x - x_(i))/h_(i + 1); Scalar alpha = 1 / h_(i + 1); return alpha *(h00_prime3_(t)*y_(i) + h10_prime3_(t)*slope_(i) + h01_prime3_(t)*y_(i + 1) + h11_prime3_(t)*slope_(i + 1)); } // hermite basis functions Scalar h00_(Scalar t) const { return (2*t - 3)*t*t + 1; } Scalar h10_(Scalar t) const { return ((t - 2)*t + 1)*t; } Scalar h01_(Scalar t) const { return (-2*t + 3)*t*t; } Scalar h11_(Scalar t) const { return (t - 1)*t*t; } // first derivative of the hermite basis functions Scalar h00_prime_(Scalar t) const { return (3*2*t - 2*3)*t; } Scalar h10_prime_(Scalar t) const { return (3*t - 2*2)*t + 1; } Scalar h01_prime_(Scalar t) const { return (-3*2*t + 2*3)*t; } Scalar h11_prime_(Scalar t) const { return (3*t - 2)*t; } // second derivative of the hermite basis functions Scalar h00_prime2_(Scalar t) const { return 2*3*2*t - 2*3; } Scalar h10_prime2_(Scalar t) const { return 2*3*t - 2*2; } Scalar h01_prime2_(Scalar t) const { return -2*3*2*t + 2*3; } Scalar h11_prime2_(Scalar t) const { return 2*3*t - 2; } // third derivative of the hermite basis functions Scalar h00_prime3_(Scalar t) const { return 2*3*2; } Scalar h10_prime3_(Scalar t) const { return 2*3; } Scalar h01_prime3_(Scalar t) const { return -2*3*2; } Scalar h11_prime3_(Scalar t) const { return 2*3; } // returns the monotonicality of an interval of a spline segment // // The return value have the following meaning: // // 3: spline is constant within interval [x0, x1] // 1: spline is monotonously increasing in the specified interval // 0: spline is not monotonic (or constant) in the specified interval // -1: spline is monotonously decreasing in the specified interval int monotonic_(int i, Scalar x0, Scalar x1) const { // shift the interval so that it is consistent with the // definitions by Stoer x0 = x0 - x_(i); x1 = x1 - x_(i); Scalar a = a_(i); Scalar b = b_(i); Scalar c = c_(i); if (std::abs(a) < 1e-20 && std::abs(b) < 1e-20 && std::abs(c) < 1e-20) return 3; // constant in interval Scalar disc = 4*b*b - 12*a*c; if (disc < 0) { // discriminant is smaller than 0, i.e. the segment does // not exhibit any extrema. return (x0*(x0*3*a + 2*b) + c > 0) ? 1 : -1; } disc = std::sqrt(disc); Scalar xE1 = (-2*b + disc)/(6*a); Scalar xE2 = (-2*b - disc)/(6*a); if (disc == 0) { // saddle point -> no extrema if (xE1 == x0) // make sure that we're not picking the saddle point // to determine whether we're monotonically increasing // or decreasing x0 = x1; return (x0*(x0*3*a + 2*b) + c > 0) ? 1 : -1; }; if ((x0 < xE1 && xE1 < x1) || (x0 < xE2 && xE2 < x1)) { // there is an extremum in the range (x0, x1) return 0; } // no extremum in range (x0, x1) x0 = (x0 + x1)/2; // pick point in the middle of the interval // to avoid extrema on the boundaries return (x0*(x0*3*a + 2*b) + c > 0) ? 1 : -1; } /*! * \brief Find all the intersections of a segment of the spline * with a cubic polynomial within a specified interval. */ int intersectSegment_(Scalar *sol, int segIdx, Scalar a, Scalar b, Scalar c, Scalar d, Scalar x0 = -1e100, Scalar x1 = 1e100) const { int n = Opm::invertCubicPolynomial(sol, a_(segIdx) - a, b_(segIdx) - b, c_(segIdx) - c, d_(segIdx) - d); x0 = std::max(x_(segIdx), x0); x1 = std::max(x_(segIdx+1), x1); // filter the intersections outside of the specified intervall int k = 0; for (int j = 0; j < n; ++j) { sol[j] += x_(segIdx); // add the offset of the intervall. For details see Stoer if (x0 <= sol[j] && sol[j] <= x1) { sol[k] = sol[j]; ++k; } } return k; } // find the segment index for a given x coordinate int segmentIdx_(Scalar x) const { // bisection int iLow = 0; int iHigh = numSamples() - 1; while (iLow + 1 < iHigh) { int i = (iLow + iHigh) / 2; if (x_(i) > x) iHigh = i; else iLow = i; }; return iLow; } /*! * \brief Returns x[i] - x[i - 1] */ Scalar h_(int i) const { assert(x_(i) > x_(i-1)); // the sampling points must be given // in ascending order return x_(i) - x_(i - 1); } /*! * \brief Returns the y coordinate of the i-th sampling point. */ Scalar x_(int i) const { return xPos_[i]; } /*! * \brief Returns the y coordinate of the i-th sampling point. */ Scalar y_(int i) const { return yPos_[i]; } /*! * \brief Returns the slope (i.e. first derivative) of the spline at * the i-th sampling point. */ Scalar slope_(int i) const { return slopeVec_[i]; } // returns the coefficient in front of the x^0 term. In Stoer this // is delta. Scalar a_(int i) const { return evalDerivative3_(/*x=*/0, i); } // returns the coefficient in front of the x^2 term In Stoer this // is gamma. Scalar b_(int i) const { return evalDerivative2_(/*x=*/0, i); } // returns the coefficient in front of the x^1 term. In Stoer this // is beta. Scalar c_(int i) const { return evalDerivative_(/*x=*/0, i); } // returns the coefficient in front of the x^0 term. In Stoer this // is alpha. Scalar d_(int i) const { return eval_(/*x=*/0, i); } Vector xPos_; Vector yPos_; Vector slopeVec_; }; } #endif