Files
opm-core/opm/core/props/satfunc/SatFuncStone2.cpp
Andreas Lauser 884c5ab027 make config.h the first header to be included in any compile unit
this is required for consistency amongst the compile units which are
linked into the same library and seems to be forgotten quite
frequently.
2013-04-10 12:56:14 +02:00

419 lines
16 KiB
C++

/*
Copyright 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include "config.h"
#include <opm/core/props/satfunc/SatFuncStone2.hpp>
#include <opm/core/props/BlackoilPhases.hpp>
#include <opm/core/props/satfunc/SaturationPropsFromDeck.hpp>
#include <opm/core/grid.h>
#include <opm/core/props/phaseUsageFromDeck.hpp>
#include <opm/core/utility/buildUniformMonotoneTable.hpp>
#include <opm/core/utility/ErrorMacros.hpp>
#include <iostream>
namespace Opm
{
void SatFuncStone2Uniform::init(const EclipseGridParser& deck,
const int table_num,
const PhaseUsage phase_usg,
const int samples)
{
phase_usage = phase_usg;
double swco = 0.0;
double swmax = 1.0;
if (phase_usage.phase_used[Aqua]) {
const SWOF::table_t& swof_table = deck.getSWOF().swof_;
const std::vector<double>& sw = swof_table[table_num][0];
const std::vector<double>& krw = swof_table[table_num][1];
const std::vector<double>& krow = swof_table[table_num][2];
const std::vector<double>& pcow = swof_table[table_num][3];
buildUniformMonotoneTable(sw, krw, samples, krw_);
buildUniformMonotoneTable(sw, krow, samples, krow_);
buildUniformMonotoneTable(sw, pcow, samples, pcow_);
krocw_ = krow[0]; // At connate water -> ecl. SWOF
swco = sw[0];
smin_[phase_usage.phase_pos[Aqua]] = sw[0];
swmax = sw.back();
smax_[phase_usage.phase_pos[Aqua]] = sw.back();
}
if (phase_usage.phase_used[Vapour]) {
const SGOF::table_t& sgof_table = deck.getSGOF().sgof_;
const std::vector<double>& sg = sgof_table[table_num][0];
const std::vector<double>& krg = sgof_table[table_num][1];
const std::vector<double>& krog = sgof_table[table_num][2];
const std::vector<double>& pcog = sgof_table[table_num][3];
buildUniformMonotoneTable(sg, krg, samples, krg_);
buildUniformMonotoneTable(sg, krog, samples, krog_);
buildUniformMonotoneTable(sg, pcog, samples, pcog_);
smin_[phase_usage.phase_pos[Vapour]] = sg[0];
if (std::fabs(sg.back() + swco - 1.0) > 1e-3) {
THROW("Gas maximum saturation in SGOF table = " << sg.back() <<
", should equal (1.0 - connate water sat) = " << (1.0 - swco));
}
smax_[phase_usage.phase_pos[Vapour]] = sg.back();
}
// These only consider water min/max sats. Consider gas sats?
smin_[phase_usage.phase_pos[Liquid]] = 1.0 - swmax;
smax_[phase_usage.phase_pos[Liquid]] = 1.0 - swco;
}
void SatFuncStone2Uniform::evalKr(const double* s, double* kr) const
{
if (phase_usage.num_phases == 3) {
// Stone-II relative permeability model.
double sw = s[Aqua];
double sg = s[Vapour];
double krw = krw_(sw);
double krg = krg_(sg);
double krow = krow_(sw + sg); // = 1 - so
double krog = krog_(sg); // = 1 - so - sw
double krocw = krocw_;
kr[Aqua] = krw;
kr[Vapour] = krg;
kr[Liquid] = krocw*((krow/krocw + krw)*(krog/krocw + krg) - krw - krg);
if (kr[Liquid] < 0.0) {
kr[Liquid] = 0.0;
}
return;
}
// We have a two-phase situation. We know that oil is active.
if (phase_usage.phase_used[Aqua]) {
int wpos = phase_usage.phase_pos[Aqua];
int opos = phase_usage.phase_pos[Liquid];
double sw = s[wpos];
double krw = krw_(sw);
double krow = krow_(sw);
kr[wpos] = krw;
kr[opos] = krow;
} else {
ASSERT(phase_usage.phase_used[Vapour]);
int gpos = phase_usage.phase_pos[Vapour];
int opos = phase_usage.phase_pos[Liquid];
double sg = s[gpos];
double krg = krg_(sg);
double krog = krog_(sg);
kr[gpos] = krg;
kr[opos] = krog;
}
}
void SatFuncStone2Uniform::evalKrDeriv(const double* s, double* kr, double* dkrds) const
{
const int np = phase_usage.num_phases;
std::fill(dkrds, dkrds + np*np, 0.0);
if (np == 3) {
// Stone-II relative permeability model.
double sw = s[Aqua];
double sg = s[Vapour];
double krw = krw_(sw);
double dkrww = krw_.derivative(sw);
double krg = krg_(sg);
double dkrgg = krg_.derivative(sg);
double krow = krow_(sw + sg);
double dkrow = krow_.derivative(sw + sg);
double krog = krog_(sg);
double dkrog = krog_.derivative(sg);
double krocw = krocw_;
kr[Aqua] = krw;
kr[Vapour] = krg;
kr[Liquid] = krocw*((krow/krocw + krw)*(krog/krocw + krg) - krw - krg);
if (kr[Liquid] < 0.0) {
kr[Liquid] = 0.0;
}
dkrds[Aqua + Aqua*np] = dkrww;
dkrds[Vapour + Vapour*np] = dkrgg;
dkrds[Liquid + Aqua*np] = krocw*((dkrow/krocw + dkrww)*(krog/krocw + krg) - dkrww);
dkrds[Liquid + Vapour*np] = krocw*((krow/krocw + krw)*(dkrog/krocw + dkrgg) - dkrgg)
+ krocw*((dkrow/krocw + krw)*(krog/krocw + krg) - dkrgg);
return;
}
// We have a two-phase situation. We know that oil is active.
if (phase_usage.phase_used[Aqua]) {
int wpos = phase_usage.phase_pos[Aqua];
int opos = phase_usage.phase_pos[Liquid];
double sw = s[wpos];
double krw = krw_(sw);
double dkrww = krw_.derivative(sw);
double krow = krow_(sw);
double dkrow = krow_.derivative(sw);
kr[wpos] = krw;
kr[opos] = krow;
dkrds[wpos + wpos*np] = dkrww;
dkrds[opos + wpos*np] = dkrow; // Row opos, column wpos, fortran order.
} else {
ASSERT(phase_usage.phase_used[Vapour]);
int gpos = phase_usage.phase_pos[Vapour];
int opos = phase_usage.phase_pos[Liquid];
double sg = s[gpos];
double krg = krg_(sg);
double dkrgg = krg_.derivative(sg);
double krog = krog_(sg);
double dkrog = krog_.derivative(sg);
kr[gpos] = krg;
kr[opos] = krog;
dkrds[gpos + gpos*np] = dkrgg;
dkrds[opos + gpos*np] = dkrog;
}
}
void SatFuncStone2Uniform::evalPc(const double* s, double* pc) const
{
pc[phase_usage.phase_pos[Liquid]] = 0.0;
if (phase_usage.phase_used[Aqua]) {
int pos = phase_usage.phase_pos[Aqua];
pc[pos] = pcow_(s[pos]);
}
if (phase_usage.phase_used[Vapour]) {
int pos = phase_usage.phase_pos[Vapour];
pc[pos] = pcog_(s[pos]);
}
}
void SatFuncStone2Uniform::evalPcDeriv(const double* s, double* pc, double* dpcds) const
{
// The problem of determining three-phase capillary pressures
// is very hard experimentally, usually one extends two-phase
// data (as for relative permeability).
// In our approach the derivative matrix is quite sparse, only
// the diagonal elements corresponding to non-oil phases are
// (potentially) nonzero.
const int np = phase_usage.num_phases;
std::fill(dpcds, dpcds + np*np, 0.0);
pc[phase_usage.phase_pos[Liquid]] = 0.0;
if (phase_usage.phase_used[Aqua]) {
int pos = phase_usage.phase_pos[Aqua];
pc[pos] = pcow_(s[pos]);
dpcds[np*pos + pos] = pcow_.derivative(s[pos]);
}
if (phase_usage.phase_used[Vapour]) {
int pos = phase_usage.phase_pos[Vapour];
pc[pos] = pcog_(s[pos]);
dpcds[np*pos + pos] = pcog_.derivative(s[pos]);
}
}
// ====== Methods for SatFuncStone2Nonuniform ======
void SatFuncStone2Nonuniform::init(const EclipseGridParser& deck,
const int table_num,
const PhaseUsage phase_usg,
const int /*samples*/)
{
phase_usage = phase_usg;
double swco = 0.0;
double swmax = 1.0;
if (phase_usage.phase_used[Aqua]) {
const SWOF::table_t& swof_table = deck.getSWOF().swof_;
const std::vector<double>& sw = swof_table[table_num][0];
const std::vector<double>& krw = swof_table[table_num][1];
const std::vector<double>& krow = swof_table[table_num][2];
const std::vector<double>& pcow = swof_table[table_num][3];
krw_ = NonuniformTableLinear<double>(sw, krw);
krow_ = NonuniformTableLinear<double>(sw, krow);
pcow_ = NonuniformTableLinear<double>(sw, pcow);
krocw_ = krow[0]; // At connate water -> ecl. SWOF
swco = sw[0];
smin_[phase_usage.phase_pos[Aqua]] = sw[0];
swmax = sw.back();
smax_[phase_usage.phase_pos[Aqua]] = sw.back();
}
if (phase_usage.phase_used[Vapour]) {
const SGOF::table_t& sgof_table = deck.getSGOF().sgof_;
const std::vector<double>& sg = sgof_table[table_num][0];
const std::vector<double>& krg = sgof_table[table_num][1];
const std::vector<double>& krog = sgof_table[table_num][2];
const std::vector<double>& pcog = sgof_table[table_num][3];
krg_ = NonuniformTableLinear<double>(sg, krg);
krog_ = NonuniformTableLinear<double>(sg, krog);
pcog_ = NonuniformTableLinear<double>(sg, pcog);
smin_[phase_usage.phase_pos[Vapour]] = sg[0];
if (std::fabs(sg.back() + swco - 1.0) > 1e-3) {
THROW("Gas maximum saturation in SGOF table = " << sg.back() <<
", should equal (1.0 - connate water sat) = " << (1.0 - swco));
}
smax_[phase_usage.phase_pos[Vapour]] = sg.back();
}
// These only consider water min/max sats. Consider gas sats?
smin_[phase_usage.phase_pos[Liquid]] = 1.0 - swmax;
smax_[phase_usage.phase_pos[Liquid]] = 1.0 - swco;
}
void SatFuncStone2Nonuniform::evalKr(const double* s, double* kr) const
{
if (phase_usage.num_phases == 3) {
// Stone-II relative permeability model.
double sw = s[Aqua];
double sg = s[Vapour];
double krw = krw_(sw);
double krg = krg_(sg);
double krow = krow_(sw + sg); // = 1 - so
double krog = krog_(sg); // = 1 - so - sw
double krocw = krocw_;
kr[Aqua] = krw;
kr[Vapour] = krg;
kr[Liquid] = krocw*((krow/krocw + krw)*(krog/krocw + krg) - krw - krg);
if (kr[Liquid] < 0.0) {
kr[Liquid] = 0.0;
}
return;
}
// We have a two-phase situation. We know that oil is active.
if (phase_usage.phase_used[Aqua]) {
int wpos = phase_usage.phase_pos[Aqua];
int opos = phase_usage.phase_pos[Liquid];
double sw = s[wpos];
double krw = krw_(sw);
double krow = krow_(sw);
kr[wpos] = krw;
kr[opos] = krow;
} else {
ASSERT(phase_usage.phase_used[Vapour]);
int gpos = phase_usage.phase_pos[Vapour];
int opos = phase_usage.phase_pos[Liquid];
double sg = s[gpos];
double krg = krg_(sg);
double krog = krog_(sg);
kr[gpos] = krg;
kr[opos] = krog;
}
}
void SatFuncStone2Nonuniform::evalKrDeriv(const double* s, double* kr, double* dkrds) const
{
const int np = phase_usage.num_phases;
std::fill(dkrds, dkrds + np*np, 0.0);
if (np == 3) {
// Stone-II relative permeability model.
double sw = s[Aqua];
double sg = s[Vapour];
double krw = krw_(sw);
double dkrww = krw_.derivative(sw);
double krg = krg_(sg);
double dkrgg = krg_.derivative(sg);
double krow = krow_(sw + sg);
double dkrow = krow_.derivative(sw + sg);
double krog = krog_(sg);
double dkrog = krog_.derivative(sg);
double krocw = krocw_;
kr[Aqua] = krw;
kr[Vapour] = krg;
kr[Liquid] = krocw*((krow/krocw + krw)*(krog/krocw + krg) - krw - krg);
if (kr[Liquid] < 0.0) {
kr[Liquid] = 0.0;
}
dkrds[Aqua + Aqua*np] = dkrww;
dkrds[Vapour + Vapour*np] = dkrgg;
dkrds[Liquid + Aqua*np] = krocw*((dkrow/krocw + dkrww)*(krog/krocw + krg) - dkrww);
dkrds[Liquid + Vapour*np] = krocw*((krow/krocw + krw)*(dkrog/krocw + dkrgg) - dkrgg)
+ krocw*((dkrow/krocw + krw)*(krog/krocw + krg) - dkrgg);
return;
}
// We have a two-phase situation. We know that oil is active.
if (phase_usage.phase_used[Aqua]) {
int wpos = phase_usage.phase_pos[Aqua];
int opos = phase_usage.phase_pos[Liquid];
double sw = s[wpos];
double krw = krw_(sw);
double dkrww = krw_.derivative(sw);
double krow = krow_(sw);
double dkrow = krow_.derivative(sw);
kr[wpos] = krw;
kr[opos] = krow;
dkrds[wpos + wpos*np] = dkrww;
dkrds[opos + wpos*np] = dkrow; // Row opos, column wpos, fortran order.
} else {
ASSERT(phase_usage.phase_used[Vapour]);
int gpos = phase_usage.phase_pos[Vapour];
int opos = phase_usage.phase_pos[Liquid];
double sg = s[gpos];
double krg = krg_(sg);
double dkrgg = krg_.derivative(sg);
double krog = krog_(sg);
double dkrog = krog_.derivative(sg);
kr[gpos] = krg;
kr[opos] = krog;
dkrds[gpos + gpos*np] = dkrgg;
dkrds[opos + gpos*np] = dkrog;
}
}
void SatFuncStone2Nonuniform::evalPc(const double* s, double* pc) const
{
pc[phase_usage.phase_pos[Liquid]] = 0.0;
if (phase_usage.phase_used[Aqua]) {
int pos = phase_usage.phase_pos[Aqua];
pc[pos] = pcow_(s[pos]);
}
if (phase_usage.phase_used[Vapour]) {
int pos = phase_usage.phase_pos[Vapour];
pc[pos] = pcog_(s[pos]);
}
}
void SatFuncStone2Nonuniform::evalPcDeriv(const double* s, double* pc, double* dpcds) const
{
// The problem of determining three-phase capillary pressures
// is very hard experimentally, usually one extends two-phase
// data (as for relative permeability).
// In our approach the derivative matrix is quite sparse, only
// the diagonal elements corresponding to non-oil phases are
// (potentially) nonzero.
const int np = phase_usage.num_phases;
std::fill(dpcds, dpcds + np*np, 0.0);
pc[phase_usage.phase_pos[Liquid]] = 0.0;
if (phase_usage.phase_used[Aqua]) {
int pos = phase_usage.phase_pos[Aqua];
pc[pos] = pcow_(s[pos]);
dpcds[np*pos + pos] = pcow_.derivative(s[pos]);
}
if (phase_usage.phase_used[Vapour]) {
int pos = phase_usage.phase_pos[Vapour];
pc[pos] = pcog_(s[pos]);
dpcds[np*pos + pos] = pcog_.derivative(s[pos]);
}
}
} // namespace Opm