added SPE-case with copyright Statoil

This commit is contained in:
Lars Kristoffer Uhlen Blatny (MADI FER MEM) 2015-07-08 14:21:38 +02:00
parent b6cc6e4715
commit 4ae2d1addb
3 changed files with 1406 additions and 0 deletions

View File

@ -0,0 +1,418 @@
-- This reservoir simulation deck is made available under the Open Database
-- License: http://opendatacommons.org/licenses/odbl/1.0/. Any rights in
-- individual contents of the database are licensed under the Database Contents
-- License: http://opendatacommons.org/licenses/dbcl/1.0/
-- Copyright (C) 2015 Statoil
-- This simulation is based on the data given in
-- 'Comparison of Solutions to a Three-Dimensional
-- Black-Oil Reservoir Simulation Problem' by Aziz S. Odeh,
-- Journal of Petroleum Technology, January 1981
---------------------------------------------------------------------------
------------------------ SPE1 - CASE 1 & 2 ---------------------------------
---------------------------------------------------------------------------
RUNSPEC
-- -------------------------------------------------------------------------
TITLE
SPE1
-- Case 1: Include keyword DRSDT in SCHEDULE-section and the corresponding data
-- Case 2: Do not include keyword DRSDT and the corresponding data
DIMENS
-- Dimensions are 10 x 10 x 3
10 10 3 /
OIL
GAS
WATER
DISGAS
-- DISGAS must be included if the run contains dissolved gas
-- This means that we are dealing with live oil
FIELD
START
-- Start date
1 'JAN' 2015 /
WELLDIMS
-- Item 1: maximum number of wells in the model
-- - there are two wells in the problem; injector and producer
-- Item 2: maximum number of grid blocks connected to any one well
-- - must be one as the wells are located at specific grid blocks
-- Item 3: maximum number of groups in the model
-- - we are dealing with only one 'group'
-- Item 4: maximum number of wells in any one group
-- - there must be two wells in a group as there are two wells in total
2 1 1 2 /
UNIFOUT
GRID
-- -------------------------------------------------------------------------
NOECHO
DX
-- There are in total 300 cells with length 1000ft in x-direction
300*1000 /
DY
-- Same reasoning as above (in y-direction)
300*1000 /
DZ
-- The layers are 20, 30 and 50 ft thick, in each layer there are 100 cells
100*20 100*30 100*50 /
TOPS
-- The depth of the top of each grid block
100*8325 100*8345 100*8375 /
PORO
-- Constant porosity of 0.3 throughout all 300 grid cells
300*0.3 /
PERMX
-- The layers have perm. 500mD (top layer), 50mD and 200mD respectivly.
100*500 100*50 100*200 /
PERMY
-- Equal to PERMX
100*500 100*50 100*200 /
PERMZ
-- Cannot find perm. in z-direction in Odeh's paper
-- For the time being, we will assume PERMZ equal to PERMX and PERMY:
100*500 100*50 100*200 /
ECHO
PROPS
-- -------------------------------------------------------------------------
PVTW
-- Item 1: pressure reference (psia)
-- Item 2: water FVF (rb per bbl or rb per stb)
-- Item 3: water compressibility (psi^{-1})
-- Item 4: water viscosity (cp)
-- Item 5: water 'viscosibility' (psi^{-1})
-- Using values from Norne:
-- In METRIC units:
-- 277.0 1.038 4.67E-5 0.318 0.0 /
-- In FIELD units:
4017.55 1.038 3.22E-6 0.318 0.0 /
ROCK
-- Item 1: reference pressure (psia)
-- Item 2: rock compressibility (psi^{-1})
-- Using values from table 1 in Odeh:
14.7 3E-6 /
-- Using values from Norne:
-- In METRIC units:
-- 277.0 4.84E-5 /
-- In FIELD units:
-- 4017.55 3.34E-6 /
SWOF
-- Column 1: water saturation
-- - this has been set to (almost) equally spaced values from 0.12 to 1
-- Column 2: corresponding water relative permeability
-- - generated from the Corey-type approx. formula
-- the coeffisient is set to 10e-5, S_{orw}=0 and S_{wi}=0.12
-- Column 3: corresponding oil relative permeability when only
-- oil and water are present
-- - we will use the same values as in column 3 in SGOF
-- this is not really correct, but since only the first
-- two values are of importance, this does not really matter
-- Column 4: corresponding water-oil capillary pressure (psi)
0.12 0 1 0
0.18 4.64876033057851E-008 1 0
0.24 0.000000186 0.997 0
0.3 4.18388429752066E-007 0.98 0
0.36 7.43801652892562E-007 0.7 0
0.42 1.16219008264463E-006 0.35 0
0.48 1.67355371900826E-006 0.2 0
0.54 2.27789256198347E-006 0.09 0
0.6 2.97520661157025E-006 0.021 0
0.66 3.7654958677686E-006 0.01 0
0.72 4.64876033057851E-006 0.001 0
0.78 0.000005625 0.0001 0
0.84 6.69421487603306E-006 0 0
0.91 8.05914256198347E-006 0 0
1 0.00001 0 0 /
SGOF
-- Column 1: gas saturation
-- Column 2: corresponding gas relative permeability
-- Column 3: corresponding oil relative permeability when oil, gas
-- and connate water are present
-- Column 4: corresponding oil-gas capillary pressure (psi)
-- Values in column 1 through 3 correspond to table 3 in Odeh's paper
0 0 1 0
0.001 0 1 0
0.02 0 0.997 0
0.05 0.005 0.980 0
0.12 0.025 0.700 0
0.2 0.075 0.350 0
0.25 0.125 0.200 0
0.3 0.190 0.090 0
0.4 0.410 0.021 0
0.45 0.60 0.010 0
0.5 0.72 0.001 0
0.6 0.87 0.0001 0
0.7 0.94 0.000 0
0.85 0.98 0.000 0
0.88 0.984 0.000 0 /
--1.00 1.0 0.000 0 /
-- Warning from Eclipse: first sat. value in SWOF + last sat. value in SGOF
-- must not be greater than 1, but Eclipse still runs
-- OPM needs the sum to be excactly 1 so I added a row with gas sat. = 0.88
-- The corresponding krg value was estimated by assuming linear rel. between
-- gas sat. and krw. between gas sat. 0.85 and 1.00 (the last two values given)
DENSITY
-- Density (lb per ft³) at surface cond. of
-- oil, water and gas, respectivly (in that order)
-- Using values from Norne:
-- In METRIC units:
-- 859.5 1033.0 0.854 /
-- In FIELD units:
53.66 64.49 0.0533 /
PVDG
-- Column 1: gas phase pressure (psia)
-- Column 2: corresponding gas formation volume factor (rb per Mscf)
-- - in Odeh's paper the units are said to be given in rb per bbl,
-- but this is assumed to be a mistake: FVF-values in Odeh's paper
-- are given in rb per scf, not rb per bbl. This will be in
-- agreement with conventions
-- Column 3: corresponding gas viscosity (cP)
-- Using values from lower right table in Odeh's table 2:
14.700 166.666 0.008000
264.70 12.0930 0.009600
514.70 6.27400 0.011200
1014.7 3.19700 0.014000
2014.7 1.61400 0.018900
2514.7 1.29400 0.020800
3014.7 1.08000 0.022800
4014.7 0.81100 0.026800
5014.7 0.64900 0.030900
9014.7 0.38600 0.047000 /
PVTO
-- Item 1: dissolved gas-oil ratio (Mscf per stb)
-- Item 2: bubble point pressure (P-bub) (psia)
-- Item 3: oil FVF for saturated oil (rb per stb)
-- Item 4: oil viscosity for saturated oil (cP)
-- Use values from top left table in Odeh's table 2:
0.0010 14.7 1.0620 1.0400 /
0.0905 264.7 1.1500 0.9750 /
0.1800 514.7 1.2070 0.9100 /
0.3710 1014.7 1.2950 0.8300 /
0.6360 2014.7 1.4350 0.6950 /
0.7750 2514.7 1.5000 0.6410 /
0.9300 3014.7 1.5650 0.5940 /
1.2700 4014.7 1.6950 0.5100
9014.7 1.5790 0.7400 /
1.6180 5014.7 1.8270 0.4490
9014.7 1.7370 0.6310 /
-- Need to specify data for undersaturated oil for the highest GOR.
-- Assume linear relation between GOR and FVF at 9014.7psi for saturated
-- and undersaturated oil such that we can find a value for FVF at 9014.7psi
-- and GOR=1.618. Use same approx. for viscosity.
/
SOLUTION
-- -------------------------------------------------------------------------
EQUIL
-- Item 1: datum depth (ft)
-- Item 2: pressure at datum depth (psia)
-- - Odeh's table 1 says that initial reservoir pressure is
-- 4800 psi at 8400ft, which explains choice of item 1 and 2.
-- Item 3: depth of water-oil contact (ft)
-- - chosen to be directly under the reservoir
-- Item 4: oil-water capillary pressure at the water oil contact (psi)
-- Item 5: depth of gas-oil contact (ft)
-- - chosen to be directly above the reservoir
-- Item 6: gas-oil capillary pressure at gas-oil contact (psi)
-- Item 7: RSVD-table (enter true or false)
-- Item 8: RVVD-table (enter true or false)
-- Item 9: Set to zero as this is the only value supported by OPM
-- Item #: 1 2 3 4 5 6 7 8 9
8400 4800 8450 0 8300 0 1 0 0 /
RSVD
-- This table needs to be specified as item 7 in EQUIL is set to true
-- Dissolved GOR initially constant with depth through the reservoir:
8300 1.270
8450 1.270 /
SUMMARY
-- -------------------------------------------------------------------------
-- 1a) Oil rate vs time
FOPR
-- Field Oil Production Rate
-- 1b) GOR vs time
WGOR
-- Well Gas-Oil Ratio
'PROD'
/
-- Using FGOR instead of WGOR:PROD results in the same graph
FGOR
-- 2a) Pressures of the cell where the injector and producer are located
BPR
1 1 1 /
10 10 3 /
/
-- 2b) Gas saturation at grid points given in Odeh's paper
BGSAT
1 1 1 /
1 1 2 /
1 1 3 /
10 1 1 /
10 1 2 /
10 1 3 /
10 10 1 /
10 10 2 /
10 10 3 /
/
-- In order to compare Eclipse with Flow:
WBHP
'INJ'
'PROD'
/
WGIR
'INJ'
'PROD'
/
WGIT
'INJ'
'PROD'
/
WGPR
'INJ'
'PROD'
/
WGPT
'INJ'
'PROD'
/
WOIR
'INJ'
'PROD'
/
WOIT
'INJ'
'PROD'
/
WOPR
'INJ'
'PROD'
/
WOPT
'INJ'
'PROD'
/
WWIR
'INJ'
'PROD'
/
WWIT
'INJ'
'PROD'
/
WWPR
'INJ'
'PROD'
/
WWPT
'INJ'
'PROD'
/
SCHEDULE
-- -------------------------------------------------------------------------
RPTSCHED
'PRES' 'SGAS' 'RS' 'WELLS' /
RPTRST
'BASIC=1' /
-- If no resolution (i.e. case 1) add:
--DRSDT
-- 0 /
-- if DRSDT is set to 0, GOR cannot rise and free gas does not
-- dissolve in undersaturated oil -> constant bubble point pressure
WELSPECS
-- Item #: 1 2 3 4 5 6
'PROD' 'G1' 10 10 8400 'OIL' /
'INJ' 'G1' 1 1 8335 'GAS' /
/
-- Coordinates in item 3-4 are retrieved from Odeh's figure 1 and 2
-- Note that the depth at the midpoint of the well grid blocks
-- has been used as reference depth for bottom hole pressure in item 5
COMPDAT
-- Item #: 1 2 3 4 5 6 7 8 9
'PROD' 10 10 3 3 'OPEN' 1* 1* 0.5 /
'INJ' 1 1 1 1 'OPEN' 1* 1* 0.5 /
/
-- Coordinates in item 2-5 are retreived from Odeh's figure 1 and 2
-- Item 9 is the well bore internal diameter,
-- the radius is given to be 0.25ft in Odeh
WCONPROD
-- Item #:1 2 3 4 5 9
'PROD' 'OPEN' 'ORAT' 20000 4* 1000 /
/
-- It is stated in Odeh's paper that the maximum oil prod. rate
-- is 20 000stb per day which explains the choice of value in item 4.
-- The items > 4 are defaulted with the exception of item 9,
-- the BHP lower limit, which is given to be 1000psia in Odeh.
WCONINJE
-- Item #:1 2 3 4 5 6 7
'INJ' 'GAS' 'OPEN' 'RATE' 100000 1* 9014 /
/
-- Stated in Odeh that gas inj. rate (item 5) is 100MMscf per day
-- BHP upper limit (item 7) should not be exceeding the highest
-- pressure in the PVT table=9014.7psia (default is 100 000psia).
TSTEP
--Advance the simulater once a month for TEN years:
31 28 31 30 31 30 31 31 30 31 30 31
31 28 31 30 31 30 31 31 30 31 30 31
31 28 31 30 31 30 31 31 30 31 30 31
31 28 31 30 31 30 31 31 30 31 30 31
31 28 31 30 31 30 31 31 30 31 30 31
31 28 31 30 31 30 31 31 30 31 30 31
31 28 31 30 31 30 31 31 30 31 30 31
31 28 31 30 31 30 31 31 30 31 30 31
31 28 31 30 31 30 31 31 30 31 30 31
31 28 31 30 31 30 31 31 30 31 30 31 /
--Advance the simulator once a year for TEN years:
--10*365 /
END

View File

@ -0,0 +1,489 @@
-- This reservoir simulation deck is made available under the Open Database
-- License: http://opendatacommons.org/licenses/odbl/1.0/. Any rights in
-- individual contents of the database are licensed under the Database Contents
-- License: http://opendatacommons.org/licenses/dbcl/1.0/
-- Copyright (C) 2015 Statoil
-- This simulation is based on the data given in
-- 'Third SPE Comparative Solution Project: Gas
-- Cycling of Retrograde Condensate Reservoirs'
-- by D.E. Kenyon and G.A. Behie,
-- Journal of Petroleum Technology, August 1987
----------------------------------------------------------------
------------------ SPE 3, CASE 1 -------------------------------
----------------------------------------------------------------
RUNSPEC
-- -------------------------------------------------------------
TITLE
SPE 3 - CASE 1
DIMENS
9 9 4 /
OIL
GAS
WATER
VAPOIL
DISGAS
FIELD
START
-- Start date
1 'JAN' 2015 /
WELLDIMS
-- Item 1: maximum number of wells in the model
-- - there are two wells in the problem; injector and producer
-- Item 2: maximum number of grid blocks connected to any one well
-- - must be two as both wells are located at two grid blocks
-- Item 3: maximum number of groups in the model
-- - we are dealing with only one 'group'
-- Item 4: maximum number of wells in any one group
-- - there must be two wells in a group as there are two wells in total
2 2 1 2 /
TABDIMS
1 1 30 30 1 /
UNIFOUT
GRID
-- ---------------------------------------------------------------
-- The values in this section are retrieved from table 2
-- and figure 1 in Kenyon & Behie
NOECHO
DX
-- There are in total 324 cells with length 293.3ft in x-direction
324*293.3 /
DY
-- Same reasoning as above (now in y-direction)
324*293.3 /
DZ
-- The layers are 30, 30, 50 and 50 ft thick,
-- in each layer there are 81 cells
81*30 81*30 81*50 81*50 /
TOPS
-- The depth of the top of each grid block
81*7315 81*7345 81*7375 81*7425 /
PORO
-- Constant porosity of 0.3 throughout all 324 grid cells
324*0.13 /
PERMX
-- The layers have horizontal (meaning x- and y-direction) permeability
-- of 130mD, 40mD, 20mD and 150, respectivly, from top to bottom layer.
81*130 81*40 81*20 81*150 /
PERMY
81*130 81*40 81*20 81*150 /
PERMZ
-- z-direction permeability is 13mD, 4mD, 2mD and 15mD from top
-- to bottom layer
81*13 81*4 81*2 81*15 /
ECHO
PROPS
-- -------------------------------------------------------------
ROCK
-- Item 1: reference pressure (psia)
-- Item 2: rock compressibility (psi^{-1})
-- - PV (pore volume) compressibility = rock compressibility
-- Using values from table 2 in Kenyon & Behie:
3550 4e-6 /
SGOF
-- Values taken from Kenyon & Behie's table 2
-- Sg Krg Kro(g) Pc
-- (first val 0) (first val 0) (only oil, gas & con. water) (for oil-gas)
0.00 0.00 0.800 0
0.04 0.005 0.650 0
0.08 0.013 0.513 0
0.12 0.026 0.400 0
0.16 0.040 0.315 0
0.20 0.058 0.250 0
0.24 0.078 0.196 0
0.28 0.100 0.150 0
0.32 0.126 0.112 0
0.36 0.156 0.082 0
0.40 0.187 0.060 0
0.44 0.222 0.040 0
0.48 0.260 0.024 0
0.52 0.300 0.012 0
0.56 0.348 0.005 0
0.60 0.400 0 0
0.64 0.450 0 0
0.68 0.505 0 0
0.72 0.562 0 0
0.76 0.620 0 0
0.80 0.680 0 0
0.84 0.740 0 0 /
-- Since Kenyon & Behie say that 'Relative permeability data were
-- based on the simplistic assumption that the rel. perm. of
-- any phase depends only on its saturation', the Kro values
-- depend only on So, which is 1-Sg-Swc when only
-- oil, gas and connate water are present.
SWOF
-- Values taken from Kenyon & Behie's table 2
-- Sw Krw 0 Kro(w) Pc
-- (first val is (first val 0) (only oil & water) (for water-oil)
-- connate water sat) (first val must be Krog at Sg=0)
0.16 0.00 0.800 50
0.20 0.002 0.650 32
0.24 0.010 0.513 21
0.28 0.020 0.400 15.5
0.32 0.033 0.315 12.0
0.36 0.049 0.250 9.2
0.40 0.066 0.196 7.0
0.44 0.090 0.150 5.3
0.48 0.119 0.112 4.2
0.52 0.150 0.082 3.4
0.56 0.186 0.060 2.7
0.60 0.227 0.040 2.1
0.64 0.277 0.024 1.7
0.68 0.330 0.012 1.3
0.72 0.390 0.005 1.0
0.76 0.462 0 0.7
0.80 0.540 0 0.5
0.84 0.620 0 0.4
0.88 0.710 0 0.3
0.92 0.800 0 0.2
0.96 0.900 0 0.1
1.00 1.000 0 0.0 /
-- The Kro values depend only on So, which is 1-Sw when
-- only oil and water are present
-- Since we know Pcgw and Pcog=0, we can conclude that Pcwo
-- should be equal to Pcgw
-- Note that 0.16 is the connate water sat. Swc (= Swi here)
-------------------- START OF PVTsim GENERATED VALUES -------------------------
-- Generated with PVTsim version 21.0.0 at 03.07.2015 10:04:27
--#FIELD
-- Salinity (mg/l)
-- 0.0
--
DENSITY
-- OilDens WaterDens GasDens
-- lb/ft3 lb/ft3 lb/ft3
43.33 62.37 0.05850 /
--
PVTW
-- RefPres Bw Cw Vw dVw
-- psia rb/stb 1/psia cP 1/psia
3427.6 1.02629 0.30698E-05 0.31107 0.59410E-05 /
--
-- Separator Conditions
-- Tsep(F) Psep(psia)
-- ---------- ----------
-- 80.00 815.00
-- 80.00 315.00
-- 80.00 65.00
-- 59.00 14.70
--
-- Reservoir temperature (F)
-- 200.00
--
-- Experiment type: Constant Mass Expansion
--
------------------------------------------------------------
--SOLUTION PRESSURE OIL FVF OIL
-- GOR Rs Po Bo VISCOSITY
--MSCF/STB psia RB/STB cP
------------------------------------------------------------
PVTO
0.189473 500.0 1.20936 0.219
1000.0 1.19352 0.240
1500.0 1.17997 0.260
2000.0 1.16819 0.279
2500.0 1.15780 0.299
3000.0 1.14853 0.318
3427.6 1.14135 0.334
3500.0 1.14019 0.337
4000.0 1.13263 0.356
4500.0 1.12574 0.374
5000.0 1.11941 0.393 /
0.479365 1000.0 1.40215 0.149
1500.0 1.37754 0.164
2000.0 1.35701 0.179
2500.0 1.33949 0.194
3000.0 1.32426 0.208
3427.6 1.31270 0.220
3500.0 1.31085 0.222
4000.0 1.29891 0.237
4500.0 1.28817 0.251
5000.0 1.27845 0.265 /
0.826985 1500.0 1.62448 0.113
2000.0 1.58913 0.124
2500.0 1.56020 0.135
3000.0 1.53584 0.146
3427.6 1.51777 0.156
3500.0 1.51492 0.157
4000.0 1.49666 0.168
4500.0 1.48052 0.179
5000.0 1.46610 0.190 /
1.250165 2000.0 1.89110 0.089
2500.0 1.84197 0.098
3000.0 1.80234 0.107
3427.6 1.77380 0.114
3500.0 1.76937 0.115
4000.0 1.74128 0.124
4500.0 1.71695 0.132
5000.0 1.69557 0.141 /
1.794854 2500.0 2.23421 0.073
3000.0 2.16656 0.080
3427.6 2.11974 0.086
3500.0 2.11259 0.087
4000.0 2.06805 0.093
4500.0 2.03039 0.100
5000.0 1.99794 0.106 /
2.549781 3000.0 2.71411 0.071
3427.6 2.63221 0.076
3500.0 2.61998 0.077
4000.0 2.54537 0.083
4500.0 2.48418 0.089
5000.0 2.43271 0.094 /
2.951016 3427.6 2.96669 0.068
3500.0 2.94777 0.069
4000.0 2.83495 0.075
4500.0 2.74550 0.080
5000.0 2.67220 0.085 /
3.033715 3500.0 3.01897 0.068
4000.0 2.90343 0.073
4500.0 2.81181 0.079
5000.0 2.73675 0.084 /
3.605023 4000.0 3.38017 0.065
4500.0 3.27351 0.070
5000.0 3.18612 0.075 /
/
------------------------------------------------------------
--PRESSURE VAPORIZED GAS FVF GAS
-- Pg OGR Rv Bg VISCOSITY
-- psia STB/MSCF RB/MSCF cP
------------------------------------------------------------
PVTG
500.0 0.0382886993 6.419987 0.012999 /
1000.0 0.0314227763 3.007969 0.014122 /
1500.0 0.0357629796 1.922602 0.015848 /
2000.0 0.0473304978 1.408289 0.018550 /
2500.0 0.0679314005 1.123337 0.022691 /
3000.0 0.1043958616 0.959755 0.029087 /
3427.6 0.1670518252 0.893267 0.038650 /
3500.0 0.1670518252 0.884653 0.039158 /
4000.0 0.1670518252 0.834785 0.042494
0.1043958616 0.809080 0.035345
0.0679314005 0.798204 0.031649
0.0473304978 0.792752 0.029766
0.0357629796 0.789094 0.028868
0.0314227763 0.786258 0.028754
0.0000000000 0.773146 0.026778 /
/
--Warning: Constant reservoir fluid composition assumed above 3428. psia
--Tabulated properties corrected to be monotonic with pressure
-------------------- END OF PVTsim GENERATED VALUES -------------------------
SOLUTION
EQUIL
-- Item 1: datum depth (ft)
-- - Datum depth is at 7500ft (table 2, Kenyon & Behie)
-- Item 2: pressure at datum depth (psia)
-- - This is 3550psia (table 2, Kenyon & Behie)
-- Item 3: depth of water-oil contact
-- - See comment under item 5
-- Item 4: oil-water capillary pressure at the water-oil contact
-- - Cap. pres. at gas-water contact is 0 (table 2, Kenyon & Behie)
-- - Cap. pres. for gas-oil is assumed 0 (table 2, Kenyon & Behie)
-- - This means oil-water cap. pres. is 0 at contact
-- Item 5: depth of gas-oil contact (ft)
-- - Since all oil is initially contained in the gas phase,
-- we can set item 5 equal to item 3, which must be
-- set to the gas-water contact (since we have assumed no oil)
-- The gas-water contact is at 7500ft (table 2, Kenyon & Behie)
-- Item 6: gas-oil capillary pressure at gas-oil contact (psi)
-- - Kenyon & Behie say this is assumed to be zero
-- Item 7: RSVD-table (enter true or false)
-- Item 8: RVVD-table (enter true or false)
-- Item 9: must set to 0 as only this is supported in OPM
-- Item #: 1 2 3 4 5 6 7 8 9
7500 3550 7500 0 7500 0 0 0 0 /
--
SUMMARY
WOPR
-- Well Oil Production Rate
'PROD'
/
FOPR
-- Field Oil Production Rate
WOPT
-- Well Oil Production Total
'PROD'
/
FOPT
-- Field Oil Production Total
BOSAT
-- Oil Saturation in lower cell block of production well
7 7 4 /
/
BRS
7 7 4 /
1 1 1 /
9 9 1 /
9 1 4 /
1 9 1 /
4 4 4 /
/
-- $$$ -- In order to compare Eclipse with Flow:
-- $$$ WBHP
-- $$$ 'INJ'
-- $$$ 'PROD'
-- $$$ /
-- $$$ WGIR
-- $$$ 'INJ'
-- $$$ 'PROD'
-- $$$ /
-- $$$ WGIT
-- $$$ 'INJ'
-- $$$ 'PROD'
-- $$$ /
-- $$$ WGPR
-- $$$ 'INJ'
-- $$$ 'PROD'
-- $$$ /
-- $$$ WGPT
-- $$$ 'INJ'
-- $$$ 'PROD'
-- $$$ /
-- $$$ WOIR
-- $$$ 'INJ'
-- $$$ 'PROD'
-- $$$ /
-- $$$ WOIT
-- $$$ 'INJ'
-- $$$ 'PROD'
-- $$$ /
-- $$$ WOPR
-- $$$ 'INJ'
-- $$$ 'PROD'
-- $$$ /
-- $$$ WOPT
-- $$$ 'INJ'
-- $$$ 'PROD'
-- $$$ /
-- $$$ WWIR
-- $$$ 'INJ'
-- $$$ 'PROD'
-- $$$ /
-- $$$ WWIT
-- $$$ 'INJ'
-- $$$ 'PROD'
-- $$$ /
-- $$$ WWPR
-- $$$ 'INJ'
-- $$$ 'PROD'
-- $$$ /
-- $$$ WWPT
-- $$$ 'INJ'
-- $$$ 'PROD'
-- $$$ /
SCHEDULE
RPTRST
'BASIC=4' /
--DRSDT
-- 0 /
-- GOR cannot rise and free gas does not dissolve in undersaturated
-- oil when setting DRSDT to 0,
-- Notice that all GOR curves are decreasing
-- -> adding DRSDT=0 should not make difference
-- No difference in BOSAT, FOPR and FOPT graphs when including DRSDT=0
WELSPECS
-- Item #: 1 2 3 4 5 6
'PROD' 'G1' 7 7 7375 'GAS' /
'INJ' 'G1' 1 1 7315 'GAS' /
/
-- The coordinates in item 3-4 are retrieved from figure 1 in Kenyon & Behie
-- Ref. manual says the top-most perforation of the well is the
-- recommended value for datum depth for BHP (item 5), which are the values
-- that are entered above
-- Both oil and gas are produced, and 'GAS' has been chosen as preferred
-- phase (item 6) for PROD. All graphs will be identical if choosing OIL
COMPDAT
-- Item #: 1 2 3 4 5 6 7 8 9
'PROD' 7 7 3 4 'OPEN' 1* 1* 2 /
'INJ' 1 1 1 2 'OPEN' 1* 1* 2 /
/
-- The coordinates item 2-5 are retrieved from figure 1 in Kenyon & Behie
-- Item 9 is the well bore internal diameter,
-- the radius is given to be 1ft in Kenyon & Behie
WCONPROD
-- Item #: 1 2 3 6 9
'PROD' 'OPEN' 'GRAT' 2* 6200 2* 500 /
/
-- It is stated in Kenyon & Behie's table 3 that the production is
-- controlled by separator gas rate of 6200Mscf per day (item 6)
-- Kenyon also says that min BHP is 500psi (item 9)
WCONINJE
-- Item #: 1 2 3 4 5 6 7
'INJ' 'GAS' 'OPEN' 'RATE' 4700 1* 4000 /
/
-- In Case 1, Kenyon & Behie require a constant recycle-gas rate of
-- 4700Mscf per day (item 5) for ten years
-- Kenyon & Behie say max BHP is 4000psi (item 7)
TSTEP
-- first year:
7*52.14285714
-- next nine years:
31 28 31 30 31 30 31 31 30 31 30 31
31 28 31 30 31 30 31 31 30 31 30 31
31 28 31 30 31 30 31 31 30 31 30 31
31 28 31 30 31 30 31 31 30 31 30 31
31 28 31 30 31 30 31 31 30 31 30 31
31 28 31 30 31 30 31 31 30 31 30 31
31 28 31 30 31 30 31 31 30 31 30 31
31 28 31 30 31 30 31 31 30 31 30 31
31 28 31 30 31 30 31 31 30 31 30 31 /
-- The cycling period ends after ten years,
-- so we need to set item 5 in WCONINJE to 0
WCONINJE
-- Item #: 1 2 3 4 5 6 7
'INJ' 'GAS' 'OPEN' 'RATE' 0 1* 4000 /
/
TSTEP
-- Advance the simulator once a month for next 5 years
-- because Kenyon & Behie say models are to run for a total of 15 years
31 28 31 30 31 30 31 31 30 31 30 31
31 28 31 30 31 30 31 31 30 31 30 31
31 28 31 30 31 30 31 31 30 31 30 31
31 28 31 30 31 30 31 31 30 31 30 31
31 28 31 30 31 30 31 31 30 31 30 31 /
END

View File

@ -0,0 +1,499 @@
-- This reservoir simulation deck is made available under the Open Database
-- License: http://opendatacommons.org/licenses/odbl/1.0/. Any rights in
-- individual contents of the database are licensed under the Database Contents
-- License: http://opendatacommons.org/licenses/dbcl/1.0/
-- Copyright (C) 2015 Statoil
-- This simulation is based on the data given in
-- 'Third SPE Comparative Solution Project: Gas
-- Cycling of Retrograde Condensate Reservoirs'
-- by D.E. Kenyon and G.A. Behie,
-- Journal of Petroleum Technology, August 1987
----------------------------------------------------------------
------------------ SPE 3, CASE 2 -------------------------------
----------------------------------------------------------------
RUNSPEC
-- -------------------------------------------------------------
TITLE
SPE 3 - CASE 2
DIMENS
9 9 4 /
OIL
GAS
WATER
VAPOIL
DISGAS
FIELD
START
-- Start date
1 'JAN' 2015 /
WELLDIMS
-- Item 1: maximum number of wells in the model
-- - there are two wells in the problem; injector and producer
-- Item 2: maximum number of grid blocks connected to any one well
-- - must be two as both wells are located at two grid blocks
-- Item 3: maximum number of groups in the model
-- - we are dealing with only one 'group'
-- Item 4: maximum number of wells in any one group
-- - there must be two wells in a group as there are two wells in total
2 2 1 2 /
TABDIMS
1 1 30 30 1 /
UNIFOUT
GRID
-- ---------------------------------------------------------------
-- The values in this section are retrieved from table 2
-- and figure 1 in Kenyon & Behie
NOECHO
DX
-- There are in total 324 cells with length 293.3ft in x-direction
324*293.3 /
DY
-- Same reasoning as above (now in y-direction)
324*293.3 /
DZ
-- The layers are 30, 30, 50 and 50 ft thick,
-- in each layer there are 81 cells
81*30 81*30 81*50 81*50 /
TOPS
-- The depth of the top of each grid block
81*7315 81*7345 81*7375 81*7425 /
PORO
-- Constant porosity of 0.3 throughout all 324 grid cells
324*0.13 /
PERMX
-- The layers have horizontal (meaning x- and y-direction) permeability
-- of 130mD, 40mD, 20mD and 150, respectivly, from top to bottom layer.
81*130 81*40 81*20 81*150 /
PERMY
81*130 81*40 81*20 81*150 /
PERMZ
-- z-direction permeability is 13mD, 4mD, 2mD and 15mD from top
-- to bottom layer
81*13 81*4 81*2 81*15 /
ECHO
PROPS
-- -------------------------------------------------------------
ROCK
-- Item 1: reference pressure (psia)
-- Item 2: rock compressibility (psi^{-1})
-- - PV (pore volume) compressibility = rock compressibility
-- Using values from table 2 in Kenyon & Behie:
3550 4e-6 /
SGOF
-- Values taken from Kenyon & Behie's table 2
-- Sg Krg Kro(g) Pc
-- (first val 0) (first val 0) (only oil, gas & con. water) (for oil-gas)
0.00 0.00 0.800 0
0.04 0.005 0.650 0
0.08 0.013 0.513 0
0.12 0.026 0.400 0
0.16 0.040 0.315 0
0.20 0.058 0.250 0
0.24 0.078 0.196 0
0.28 0.100 0.150 0
0.32 0.126 0.112 0
0.36 0.156 0.082 0
0.40 0.187 0.060 0
0.44 0.222 0.040 0
0.48 0.260 0.024 0
0.52 0.300 0.012 0
0.56 0.348 0.005 0
0.60 0.400 0 0
0.64 0.450 0 0
0.68 0.505 0 0
0.72 0.562 0 0
0.76 0.620 0 0
0.80 0.680 0 0
0.84 0.740 0 0 /
-- Since Kenyon & Behie say that 'Relative permeability data were
-- based on the simplistic assumption that the rel. perm. of
-- any phase depends only on its saturation', the Kro values
-- depend only on So, which is 1-Sg-Swc when only
-- oil, gas and connate water are present.
SWOF
-- Values taken from Kenyon & Behie's table 2
-- Sw Krw 0 Kro(w) Pc
-- (first val is (first val 0) (only oil & water) (for water-oil)
-- connate water sat) (first val must be Krog at Sg=0)
0.16 0.00 0.800 50
0.20 0.002 0.650 32
0.24 0.010 0.513 21
0.28 0.020 0.400 15.5
0.32 0.033 0.315 12.0
0.36 0.049 0.250 9.2
0.40 0.066 0.196 7.0
0.44 0.090 0.150 5.3
0.48 0.119 0.112 4.2
0.52 0.150 0.082 3.4
0.56 0.186 0.060 2.7
0.60 0.227 0.040 2.1
0.64 0.277 0.024 1.7
0.68 0.330 0.012 1.3
0.72 0.390 0.005 1.0
0.76 0.462 0 0.7
0.80 0.540 0 0.5
0.84 0.620 0 0.4
0.88 0.710 0 0.3
0.92 0.800 0 0.2
0.96 0.900 0 0.1
1.00 1.000 0 0.0 /
-- The Kro values depend only on So, which is 1-Sw when
-- only oil and water are present
-- Since we know Pcgw and Pcog=0, we can conclude that Pcwo
-- should be equal to Pcgw
-- Note that 0.16 is the connate water sat. Swc (= Swi here)
-------------------- START OF PVTsim GENERATED VALUES -------------------------
-- Generated with PVTsim version 21.0.0 at 03.07.2015 10:04:27
--#FIELD
-- Salinity (mg/l)
-- 0.0
--
DENSITY
-- OilDens WaterDens GasDens
-- lb/ft3 lb/ft3 lb/ft3
43.33 62.37 0.05850 /
--
PVTW
-- RefPres Bw Cw Vw dVw
-- psia rb/stb 1/psia cP 1/psia
3427.6 1.02629 0.30698E-05 0.31107 0.59410E-05 /
--
-- Separator Conditions
-- Tsep(F) Psep(psia)
-- ---------- ----------
-- 80.00 815.00
-- 80.00 315.00
-- 80.00 65.00
-- 59.00 14.70
--
-- Reservoir temperature (F)
-- 200.00
--
-- Experiment type: Constant Mass Expansion
--
------------------------------------------------------------
--SOLUTION PRESSURE OIL FVF OIL
-- GOR Rs Po Bo VISCOSITY
--MSCF/STB psia RB/STB cP
------------------------------------------------------------
PVTO
0.189473 500.0 1.20936 0.219
1000.0 1.19352 0.240
1500.0 1.17997 0.260
2000.0 1.16819 0.279
2500.0 1.15780 0.299
3000.0 1.14853 0.318
3427.6 1.14135 0.334
3500.0 1.14019 0.337
4000.0 1.13263 0.356
4500.0 1.12574 0.374
5000.0 1.11941 0.393 /
0.479365 1000.0 1.40215 0.149
1500.0 1.37754 0.164
2000.0 1.35701 0.179
2500.0 1.33949 0.194
3000.0 1.32426 0.208
3427.6 1.31270 0.220
3500.0 1.31085 0.222
4000.0 1.29891 0.237
4500.0 1.28817 0.251
5000.0 1.27845 0.265 /
0.826985 1500.0 1.62448 0.113
2000.0 1.58913 0.124
2500.0 1.56020 0.135
3000.0 1.53584 0.146
3427.6 1.51777 0.156
3500.0 1.51492 0.157
4000.0 1.49666 0.168
4500.0 1.48052 0.179
5000.0 1.46610 0.190 /
1.250165 2000.0 1.89110 0.089
2500.0 1.84197 0.098
3000.0 1.80234 0.107
3427.6 1.77380 0.114
3500.0 1.76937 0.115
4000.0 1.74128 0.124
4500.0 1.71695 0.132
5000.0 1.69557 0.141 /
1.794854 2500.0 2.23421 0.073
3000.0 2.16656 0.080
3427.6 2.11974 0.086
3500.0 2.11259 0.087
4000.0 2.06805 0.093
4500.0 2.03039 0.100
5000.0 1.99794 0.106 /
2.549781 3000.0 2.71411 0.071
3427.6 2.63221 0.076
3500.0 2.61998 0.077
4000.0 2.54537 0.083
4500.0 2.48418 0.089
5000.0 2.43271 0.094 /
2.951016 3427.6 2.96669 0.068
3500.0 2.94777 0.069
4000.0 2.83495 0.075
4500.0 2.74550 0.080
5000.0 2.67220 0.085 /
3.033715 3500.0 3.01897 0.068
4000.0 2.90343 0.073
4500.0 2.81181 0.079
5000.0 2.73675 0.084 /
3.605023 4000.0 3.38017 0.065
4500.0 3.27351 0.070
5000.0 3.18612 0.075 /
/
------------------------------------------------------------
--PRESSURE VAPORIZED GAS FVF GAS
-- Pg OGR Rv Bg VISCOSITY
-- psia STB/MSCF RB/MSCF cP
------------------------------------------------------------
PVTG
500.0 0.0382886993 6.419987 0.012999 /
1000.0 0.0314227763 3.007969 0.014122 /
1500.0 0.0357629796 1.922602 0.015848 /
2000.0 0.0473304978 1.408289 0.018550 /
2500.0 0.0679314005 1.123337 0.022691 /
3000.0 0.1043958616 0.959755 0.029087 /
3427.6 0.1670518252 0.893267 0.038650 /
3500.0 0.1670518252 0.884653 0.039158 /
4000.0 0.1670518252 0.834785 0.042494
0.1043958616 0.809080 0.035345
0.0679314005 0.798204 0.031649
0.0473304978 0.792752 0.029766
0.0357629796 0.789094 0.028868
0.0314227763 0.786258 0.028754
0.0000000000 0.773146 0.026778 /
/
--Warning: Constant reservoir fluid composition assumed above 3428. psia
--Tabulated properties corrected to be monotonic with pressure
-------------------- END OF PVTsim GENERATED VALUES -------------------------
SOLUTION
EQUIL
-- Item 1: datum depth (ft)
-- - Datum depth is at 7500ft (table 2, Kenyon & Behie)
-- Item 2: pressure at datum depth (psia)
-- - This is 3550psia (table 2, Kenyon & Behie)
-- Item 3: depth of water-oil contact
-- - See comment under item 5
-- Item 4: oil-water capillary pressure at the water-oil contact
-- - Cap. pres. at gas-water contact is 0 (table 2, Kenyon & Behie)
-- - Cap. pres. for gas-oil is assumed 0 (table 2, Kenyon & Behie)
-- - This means oil-water cap. pres. is 0 at contact
-- Item 5: depth of gas-oil contact (ft)
-- - Since all oil is initially contained in the gas phase,
-- we can set item 5 equal to item 3, which must be
-- set to the gas-water contact (since we have assumed no oil)
-- The gas-water contact is at 7500ft (table 2, Kenyon & Behie)
-- Item 6: gas-oil capillary pressure at gas-oil contact (psi)
-- - Kenyon & Behie say this is assumed to be zero
-- Item 7: RSVD-table (enter true or false)
-- Item 8: RVVD-table (enter true or false)
-- Item 9: must set to 0 as only this is supported in OPM
-- Item #: 1 2 3 4 5 6 7 8 9
7500 3550 7500 0 7500 0 0 0 0 /
--
SUMMARY
WOPR
-- Well Oil Production Rate
'PROD'
/
FOPR
-- Field Oil Production Rate
WOPT
-- Well Oil Production Total
'PROD'
/
FOPT
-- Field Oil Production Total
BOSAT
-- Oil Saturation in lower cell block of production well
7 7 4 /
/
BRS
7 7 4 /
1 1 1 /
9 9 1 /
9 1 4 /
1 9 1 /
4 4 4 /
/
-- $$$ -- In order to compare Eclipse with Flow:
-- $$$ WBHP
-- $$$ 'INJ'
-- $$$ 'PROD'
-- $$$ /
-- $$$ WGIR
-- $$$ 'INJ'
-- $$$ 'PROD'
-- $$$ /
-- $$$ WGIT
-- $$$ 'INJ'
-- $$$ 'PROD'
-- $$$ /
-- $$$ WGPR
-- $$$ 'INJ'
-- $$$ 'PROD'
-- $$$ /
-- $$$ WGPT
-- $$$ 'INJ'
-- $$$ 'PROD'
-- $$$ /
-- $$$ WOIR
-- $$$ 'INJ'
-- $$$ 'PROD'
-- $$$ /
-- $$$ WOIT
-- $$$ 'INJ'
-- $$$ 'PROD'
-- $$$ /
-- $$$ WOPR
-- $$$ 'INJ'
-- $$$ 'PROD'
-- $$$ /
-- $$$ WOPT
-- $$$ 'INJ'
-- $$$ 'PROD'
-- $$$ /
-- $$$ WWIR
-- $$$ 'INJ'
-- $$$ 'PROD'
-- $$$ /
-- $$$ WWIT
-- $$$ 'INJ'
-- $$$ 'PROD'
-- $$$ /
-- $$$ WWPR
-- $$$ 'INJ'
-- $$$ 'PROD'
-- $$$ /
-- $$$ WWPT
-- $$$ 'INJ'
-- $$$ 'PROD'
-- $$$ /
SCHEDULE
RPTRST
'BASIC=4' /
--DRSDT
-- 0 /
-- GOR cannot rise and free gas does not dissolve in undersaturated
-- oil when setting DRSDT to 0,
-- Notice that all GOR curves are decreasing
-- -> adding DRSDT=0 should not make difference
-- No difference in BOSAT, FOPR and FOPT graphs when including DRSDT=0
WELSPECS
-- Item #: 1 2 3 4 5 6
'PROD' 'G1' 7 7 7375 'GAS' /
'INJ' 'G1' 1 1 7315 'GAS' /
/
-- The coordinates in item 3-4 are retrieved from figure 1 in Kenyon & Behie
-- Ref. manual says the top-most perforation of the well is the
-- recommended value for datum depth for BHP (item 5), which are the values
-- that are entered above
-- Both oil and gas are produced, and 'GAS' has been chosen as preferred
-- phase (item 6) for PROD. All graphs will be identical if choosing OIL
COMPDAT
-- Item #: 1 2 3 4 5 6 7 8 9
'PROD' 7 7 3 4 'OPEN' 1* 1* 2 /
'INJ' 1 1 1 2 'OPEN' 1* 1* 2 /
/
-- The coordinates item 2-5 are retrieved from figure 1 in Kenyon & Behie
-- Item 9 is the well bore internal diameter,
-- the radius is given to be 1ft in Kenyon & Behie
WCONPROD
-- Item #: 1 2 3 6 9
'PROD' 'OPEN' 'GRAT' 2* 6200 2* 500 /
/
-- It is stated in Kenyon & Behie's table 3 that the production is
-- controlled by separator gas rate of 6200Mscf per day (item 6)
-- Kenyon also says that min BHP is 500psi (item 9)
WCONINJE
-- Item #: 1 2 3 4 5 6 7
'INJ' 'GAS' 'OPEN' 'RATE' 5700 1* 4000 /
/
-- In Case 2, Kenyon & Behie require a constant recycle-gas rate of
-- 5700Mscf per day (item 5) for the first 5 years
-- Kenyon & Behie say max BHP is 4000psi (item 7)
TSTEP
-- first year:
7*52.14285714
-- next four years:
31 28 31 30 31 30 31 31 30 31 30 31
31 28 31 30 31 30 31 31 30 31 30 31
31 28 31 30 31 30 31 31 30 31 30 31
31 28 31 30 31 30 31 31 30 31 30 31 /
-- For the next 5 years, item 5 in WCONINJE must be changed to 3700Mscf per day
-- as stated in Kenyon & Behie
WCONINJE
-- Item #: 1 2 3 4 5 6 7
'INJ' 'GAS' 'OPEN' 'RATE' 3700 1* 4000 /
/
TSTEP
31 28 31 30 31 30 31 31 30 31 30 31
31 28 31 30 31 30 31 31 30 31 30 31
31 28 31 30 31 30 31 31 30 31 30 31
31 28 31 30 31 30 31 31 30 31 30 31
31 28 31 30 31 30 31 31 30 31 30 31 /
-- The cycling period ends after ten years,
-- so we need to set item 5 in WCONINJE to 0
WCONINJE
-- Item #: 1 2 3 4 5 6 7
'INJ' 'GAS' 'OPEN' 'RATE' 0 1* 4000 /
/
TSTEP
-- Advance the simulator once a month for next 5 years
-- because Kenyon & Behie say models are to run for a total of 15 years
31 28 31 30 31 30 31 31 30 31 30 31
31 28 31 30 31 30 31 31 30 31 30 31
31 28 31 30 31 30 31 31 30 31 30 31
31 28 31 30 31 30 31 31 30 31 30 31
31 28 31 30 31 30 31 31 30 31 30 31 /
END