opm-data/spe3/SPE3CASE1.DATA
2016-07-25 13:46:34 +02:00

498 lines
15 KiB
Plaintext

-- This reservoir simulation deck is made available under the Open Database
-- License: http://opendatacommons.org/licenses/odbl/1.0/. Any rights in
-- individual contents of the database are licensed under the Database Contents
-- License: http://opendatacommons.org/licenses/dbcl/1.0/
-- Copyright (C) 2015 Statoil
-- This simulation is based on the data given in
-- 'Third SPE Comparative Solution Project: Gas
-- Cycling of Retrograde Condensate Reservoirs'
-- by D.E. Kenyon and G.A. Behie,
-- Journal of Petroleum Technology, August 1987
----------------------------------------------------------------
------------------ SPE 3, CASE 1 -------------------------------
----------------------------------------------------------------
RUNSPEC
-- -------------------------------------------------------------
TITLE
SPE 3 - CASE 1
DIMENS
9 9 4 /
OIL
GAS
WATER
VAPOIL
DISGAS
FIELD
START
1 'JAN' 2015 /
WELLDIMS
-- Item 1: maximum number of wells in the model
-- - there are two wells in the problem; injector and producer
-- Item 2: maximum number of grid blocks connected to any one well
-- - must be two as both wells are located at two grid blocks
-- Item 3: maximum number of groups in the model
-- - we are dealing with only one 'group'
-- Item 4: maximum number of wells in any one group
-- - there must be two wells in a group as there are two wells in total
2 2 1 2 /
TABDIMS
-- The max number of saturation and pressure nodes in the PROPS-tables
-- exceeds the default -> item 3 and 4 in TABDIMS must be changed
1* 1* 30 30 /
EQLDIMS
/
UNIFOUT
GRID
-- The INIT keyword is used to request an .INIT file. The .INIT file
-- is written before the simulation actually starts, and contains grid
-- properties and saturation tables as inferred from the input
-- deck. There are no other keywords which can be used to configure
-- exactly what is written to the .INIT file.
INIT
-- ---------------------------------------------------------------
-- The values in this section are retrieved from table 2
-- and figure 1 in Kenyon & Behie
NOECHO
DX
-- There are in total 324 cells with length 293.3ft in x-direction
324*293.3 /
DY
-- There are in total 324 cells with length 293.3ft in y-direction
324*293.3 /
DZ
-- The layers are 30, 30, 50 and 50 ft thick
-- In each layer there are 81 cells
81*30 81*30 81*50 81*50 /
TOPS
-- The depth of the top of each grid block
-- 81*7315 81*7345 81*7375 81*7425 /
81*7315 /
PORO
-- Constant porosity of 0.3 throughout all 324 grid cells
324*0.13 /
PERMX
-- The layers have horizontal (meaning x- and y-direction) permeability
-- of 130mD, 40mD, 20mD and 150, respectively, from top to bottom layer.
81*130 81*40 81*20 81*150 /
PERMY
81*130 81*40 81*20 81*150 /
PERMZ
-- z-direction permeability is 13mD, 4mD, 2mD and 15mD,respectively, from top
-- to bottom layer
81*13 81*4 81*2 81*15 /
ECHO
PROPS
-- -------------------------------------------------------------
ROCK
-- Item 1: reference pressure (psia)
-- Item 2: rock compressibility (psi^{-1})
-- Using values from table 2 in Kenyon & Behie:
3550 4e-6 /
SGOF
-- Values taken from Kenyon & Behie's table 2
-- Sg Krg Kro(g) Pc
-- (first val 0) (first val 0) (only oil, gas & con. water) (for oil-gas)
0.00 0.00 0.800 0
0.04 0.005 0.650 0
0.08 0.013 0.513 0
0.12 0.026 0.400 0
0.16 0.040 0.315 0
0.20 0.058 0.250 0
0.24 0.078 0.196 0
0.28 0.100 0.150 0
0.32 0.126 0.112 0
0.36 0.156 0.082 0
0.40 0.187 0.060 0
0.44 0.222 0.040 0
0.48 0.260 0.024 0
0.52 0.300 0.012 0
0.56 0.348 0.005 0
0.60 0.400 0 0
0.64 0.450 0 0
0.68 0.505 0 0
0.72 0.562 0 0
0.76 0.620 0 0
0.80 0.680 0 0
0.84 0.740 0 0 /
-- Since Kenyon & Behie say that 'Relative permeability data were
-- based on the simplistic assumption that the rel. perm. of
-- any phase depends only on its saturation', the Kro values
-- depend only on So, which is 1-Sg-Swc when only
-- oil, gas and connate water are present. Swc=0.16 (= Swi here)
SWOF
-- Values taken from Kenyon & Behie's table 2
-- Sw Krw 0 Kro(w) Pc
-- (first val is (first val 0) (only oil & water) (for water-oil)
-- connate water sat) (first val must be Krog at Sg=0)
0.16 0.00 0.800 50
0.20 0.002 0.650 32
0.24 0.010 0.513 21
0.28 0.020 0.400 15.5
0.32 0.033 0.315 12.0
0.36 0.049 0.250 9.2
0.40 0.066 0.196 7.0
0.44 0.090 0.150 5.3
0.48 0.119 0.112 4.2
0.52 0.150 0.082 3.4
0.56 0.186 0.060 2.7
0.60 0.227 0.040 2.1
0.64 0.277 0.024 1.7
0.68 0.330 0.012 1.3
0.72 0.390 0.005 1.0
0.76 0.462 0 0.7
0.80 0.540 0 0.5
0.84 0.620 0 0.4
0.88 0.710 0 0.3
0.92 0.800 0 0.2
0.96 0.900 0 0.1
1.00 1.000 0 0.0 /
-- The Kro values depend only on So, which is 1-Sw when
-- only oil and water are present
-- Since we know Pcgw and since Pcog=0, we can conclude that Pcwo
-- should be equal to Pcgw
-------------------- START OF PVTsim GENERATED VALUES -------------------------
-- Generated with PVTsim version 21.0.0 at 03.07.2015 10:04:27
--#FIELD
-- Salinity (mg/l)
-- 0.0
--
DENSITY
-- OilDens WaterDens GasDens
-- lb/ft3 lb/ft3 lb/ft3
43.33 62.37 0.05850 /
--
PVTW
-- RefPres Bw Cw Vw dVw
-- psia rb/stb 1/psia cP 1/psia
3427.6 1.02629 0.30698E-05 0.31107 0.59410E-05 /
--
-- Separator Conditions (from table 3 in Kenyon & Behie's paper)
-- Tsep(F) Psep(psia)
-- ---------- ----------
-- 80.00 815.00
-- 80.00 315.00
-- 80.00 65.00
-- 59.00 14.70
--
-- Reservoir temperature (F)
-- 200.00
--
-- Experiment type: Constant Mass Expansion
--
------------------------------------------------------------
--SOLUTION PRESSURE OIL FVF OIL
-- GOR Rs Po Bo VISCOSITY
--MSCF/STB psia RB/STB cP
------------------------------------------------------------
PVTO
0.189473 500.0 1.20936 0.219
1000.0 1.19352 0.240
1500.0 1.17997 0.260
2000.0 1.16819 0.279
2500.0 1.15780 0.299
3000.0 1.14853 0.318
3427.6 1.14135 0.334
3500.0 1.14019 0.337
4000.0 1.13263 0.356
4500.0 1.12574 0.374
5000.0 1.11941 0.393 /
0.479365 1000.0 1.40215 0.149
1500.0 1.37754 0.164
2000.0 1.35701 0.179
2500.0 1.33949 0.194
3000.0 1.32426 0.208
3427.6 1.31270 0.220
3500.0 1.31085 0.222
4000.0 1.29891 0.237
4500.0 1.28817 0.251
5000.0 1.27845 0.265 /
0.826985 1500.0 1.62448 0.113
2000.0 1.58913 0.124
2500.0 1.56020 0.135
3000.0 1.53584 0.146
3427.6 1.51777 0.156
3500.0 1.51492 0.157
4000.0 1.49666 0.168
4500.0 1.48052 0.179
5000.0 1.46610 0.190 /
1.250165 2000.0 1.89110 0.089
2500.0 1.84197 0.098
3000.0 1.80234 0.107
3427.6 1.77380 0.114
3500.0 1.76937 0.115
4000.0 1.74128 0.124
4500.0 1.71695 0.132
5000.0 1.69557 0.141 /
1.794854 2500.0 2.23421 0.073
3000.0 2.16656 0.080
3427.6 2.11974 0.086
3500.0 2.11259 0.087
4000.0 2.06805 0.093
4500.0 2.03039 0.100
5000.0 1.99794 0.106 /
2.549781 3000.0 2.71411 0.071
3427.6 2.63221 0.076
3500.0 2.61998 0.077
4000.0 2.54537 0.083
4500.0 2.48418 0.089
5000.0 2.43271 0.094 /
2.951016 3427.6 2.96669 0.068
3500.0 2.94777 0.069
4000.0 2.83495 0.075
4500.0 2.74550 0.080
5000.0 2.67220 0.085 /
3.033715 3500.0 3.01897 0.068
4000.0 2.90343 0.073
4500.0 2.81181 0.079
5000.0 2.73675 0.084 /
3.605023 4000.0 3.38017 0.065
4500.0 3.27351 0.070
5000.0 3.18612 0.075 /
/
------------------------------------------------------------
--PRESSURE VAPORIZED GAS FVF GAS
-- Pg OGR Rv Bg VISCOSITY
-- psia STB/MSCF RB/MSCF cP
------------------------------------------------------------
PVTG
500.0 0.0382886993 6.419987 0.012999 /
1000.0 0.0314227763 3.007969 0.014122 /
1500.0 0.0357629796 1.922602 0.015848 /
2000.0 0.0473304978 1.408289 0.018550 /
2500.0 0.0679314005 1.123337 0.022691 /
3000.0 0.1043958616 0.959755 0.029087 /
3427.6 0.1670518252 0.893267 0.038650 /
3500.0 0.1670518252 0.884653 0.039158 /
4000.0 0.1670518252 0.834785 0.042494
0.1043958616 0.809080 0.035345
0.0679314005 0.798204 0.031649
0.0473304978 0.792752 0.029766
0.0357629796 0.789094 0.028868
0.0314227763 0.786258 0.028754
0.0000000000 0.773146 0.026778 /
/
--Warning: Constant reservoir fluid composition assumed above 3428. psia
--Tabulated properties corrected to be monotonic with pressure
-------------------- END OF PVTsim GENERATED VALUES -------------------------
SOLUTION
EQUIL
-- Item 1: datum depth (ft)
-- - Datum depth is at 7500ft (table 2, Kenyon & Behie)
-- Item 2: pressure at datum depth (psia)
-- - This is 3550psia (table 2, Kenyon & Behie)
-- Item 3: depth of water-oil contact
-- - See comment under item 5
-- Item 4: oil-water capillary pressure at the water-oil contact
-- - Cap. pres. at gas-water contact is 0 (table 2, Kenyon & Behie)
-- - Cap. pres. for gas-oil is assumed 0 (table 2, Kenyon & Behie)
-- - This means oil-water cap. pres. is 0 at contact
-- Item 5: depth of gas-oil contact (ft)
-- - Since all oil is initially contained in the gas phase,
-- we can set item 5 equal to item 3, which must be
-- set to the gas-water contact (since we have assumed no oil)
-- The gas-water contact is at 7500ft (table 2, Kenyon & Behie)
-- Item 6: gas-oil capillary pressure at gas-oil contact (psi)
-- - Kenyon & Behie say this is assumed to be zero
-- Item 7: RSVD-table
-- Item 8: RVVD-table
-- Item 9: must set to 0 as only this is supported in OPM
-- Item #: 1 2 3 4 5 6 7 8 9
7500 3550 7500 0 7500 0 0 0 0 /
--
SUMMARY
WOPR
'PROD'
/
FOPR
WOPT
'PROD'
/
FOPT
BOSAT
-- Oil Saturation in lower cell block of production well
7 7 4 /
/
BRS
7 7 4 /
1 1 1 /
9 9 1 /
9 1 4 /
1 9 1 /
4 4 4 /
/
-- In order to compare Eclipse with Flow:
WBHP
'INJ'
'PROD'
/
WGIR
'INJ'
'PROD'
/
-- $$$ WGIT
-- $$$ 'INJ'
-- $$$ 'PROD'
-- $$$ /
WGPR
'INJ'
'PROD'
/
-- $$$ WGPT
-- $$$ 'INJ'
-- $$$ 'PROD'
-- $$$ /
WOIR
'INJ'
'PROD'
/
-- $$$ WOIT
-- $$$ 'INJ'
-- $$$ 'PROD'
-- $$$ /
-- $$$ WOPR
-- $$$ 'INJ'
-- $$$ 'PROD'
-- $$$ /
-- $$$ WOPT
-- $$$ 'INJ'
-- $$$ 'PROD'
-- $$$ /
WWIR
'INJ'
'PROD'
/
-- $$$ WWIT
-- $$$ 'INJ'
-- $$$ 'PROD'
-- $$$ /
WWPR
'INJ'
'PROD'
/
-- $$$ WWPT
-- $$$ 'INJ'
-- $$$ 'PROD'
-- $$$ /
SCHEDULE
RPTRST
'BASIC=4' /
--DRSDT
-- 0 /
-- GOR cannot rise and free gas does not dissolve in undersaturated
-- oil when setting DRSDT to 0,
-- Notice that all GOR curves are decreasing
-- -> adding DRSDT=0 should not make difference
-- No difference in BOSAT, FOPR and FOPT graphs when including DRSDT=0
WELSPECS
-- Item #: 1 2 3 4 5 6
'PROD' 'G1' 7 7 7375 'GAS' /
'INJ' 'G1' 1 1 7315 'GAS' /
/
-- The coordinates in item 3-4 are retrieved from figure 1 in Kenyon & Behie
-- Ref. manual says the top-most perforation of the well is the
-- recommended value for datum depth for BHP (item 5), which are the values
-- that are entered above
-- Both oil and gas are produced, and 'GAS' has been chosen as preferred
-- phase (item 6) for PROD. All graphs will be identical if choosing OIL
COMPDAT
-- Item #: 1 2 3 4 5 6 7 8 9
'PROD' 7 7 3 4 'OPEN' 1* 1* 2 /
'INJ' 1 1 1 2 'OPEN' 1* 1* 2 /
/
-- The coordinates in item 2-5 are retrieved from figure 1 in Kenyon & Behie
-- Item 9 is the well bore internal diameter,
-- the radius is given to be 1ft in Kenyon & Behie's paper
WCONPROD
-- Item #: 1 2 3 6 9
'PROD' 'OPEN' 'GRAT' 2* 6200 2* 500 /
/
-- It is stated in Kenyon & Behie's table 3 that the production is
-- controlled by a separator gas rate of 6200Mscf per day (item 6)
-- Kenyon & Behie also say that min BHP is 500psi (item 9)
WCONINJE
-- Item #: 1 2 3 4 5 6 7
'INJ' 'GAS' 'OPEN' 'RATE' 4700 1* 4000 /
/
-- In Case 1, Kenyon & Behie require a constant recycle-gas rate of
-- 4700Mscf per day (item 5) for ten years
-- Kenyon & Behie say max BHP is 4000psi (item 7)
TSTEP
-- first year:
7*52.14285714
-- next nine years:
31 28 31 30 31 30 31 31 30 31 30 31
31 28 31 30 31 30 31 31 30 31 30 31
31 28 31 30 31 30 31 31 30 31 30 31
31 28 31 30 31 30 31 31 30 31 30 31
31 28 31 30 31 30 31 31 30 31 30 31
31 28 31 30 31 30 31 31 30 31 30 31
31 28 31 30 31 30 31 31 30 31 30 31
31 28 31 30 31 30 31 31 30 31 30 31
31 28 31 30 31 30 31 31 30 31 30 31 /
-- The cycling period ends after ten years,
-- so we need to set item 5 in WCONINJE to 0:
WCONINJE
-- Item #: 1 2 3 4 5 6 7
'INJ' 'GAS' 'OPEN' 'RATE' 0 1* 4000 /
/
TSTEP
-- Advance the simulator once a month for next 5 years
-- because Kenyon & Behie say models are to run for a total of 15 years
31 28 31 30 31 30 31 31 30 31 30 31
31 28 31 30 31 30 31 31 30 31 30 31
31 28 31 30 31 30 31 31 30 31 30 31
31 28 31 30 31 30 31 31 30 31 30 31
31 28 31 30 31 30 31 31 30 31 30 31 /
END