opm-data/spe1/SPE1CASE2_2P.DATA
Arne Morten Kvarving 16236e4737 enable INIT file in SPE1CASE2_2P
for regression test
2017-05-04 21:22:58 +02:00

333 lines
9.1 KiB
Plaintext

-- This reservoir simulation deck is made available under the Open Database
-- License: http://opendatacommons.org/licenses/odbl/1.0/. Any rights in
-- individual contents of the database are licensed under the Database Contents
-- License: http://opendatacommons.org/licenses/dbcl/1.0/
-- Copyright (C) 2015 Statoil
-- This simulation is based on the data given in
-- 'Comparison of Solutions to a Three-Dimensional
-- Black-Oil Reservoir Simulation Problem' by Aziz S. Odeh,
-- Journal of Petroleum Technology, January 1981
-- Modified to server as a oil-water two phase case
---------------------------------------------------------------------------
------------------------ SPE1 - CASE 2 -oil-water two phase case-----------
---------------------------------------------------------------------------
RUNSPEC
-- -------------------------------------------------------------------------
TITLE
SPE1 - CASE 2 -- oil-water two phase case
DIMENS
10 10 3 /
-- The number of equilibration regions is inferred from the EQLDIMS
-- keyword.
EQLDIMS
/
-- The number of PVTW tables is inferred from the TABDIMS keyword;
-- when no data is included in the keyword the default values are used.
TABDIMS
/
OIL
WATER
FIELD
START
1 'JAN' 2015 /
WELLDIMS
-- Item 1: maximum number of wells in the model
-- - there are two wells in the problem; injector and producer
-- Item 2: maximum number of grid blocks connected to any one well
-- - must be one as the wells are located at specific grid blocks
-- Item 3: maximum number of groups in the model
-- - we are dealing with only one 'group'
-- Item 4: maximum number of wells in any one group
-- - there must be two wells in a group as there are two wells in total
2 1 1 2 /
UNIFOUT
GRID
-- The INIT keyword is used to request an .INIT file. The .INIT file
-- is written before the simulation actually starts, and contains grid
-- properties and saturation tables as inferred from the input
-- deck. There are no other keywords which can be used to configure
-- exactly what is written to the .INIT file.
INIT
-- -------------------------------------------------------------------------
NOECHO
DX
-- There are in total 300 cells with length 1000ft in x-direction
300*1000 /
DY
-- There are in total 300 cells with length 1000ft in y-direction
300*1000 /
DZ
-- The layers are 20, 30 and 50 ft thick, in each layer there are 100 cells
100*20 100*30 100*50 /
TOPS
-- The depth of the top of each grid block
100*8325 /
PORO
-- Constant porosity of 0.3 throughout all 300 grid cells
300*0.3 /
PERMX
-- The layers have perm. 500mD, 50mD and 200mD, respectively.
100*500 100*50 100*200 /
PERMY
-- Equal to PERMX
100*500 100*50 100*200 /
PERMZ
-- Cannot find perm. in z-direction in Odeh's paper
-- For the time being, we will assume PERMZ equal to PERMX and PERMY:
100*500 100*50 100*200 /
ECHO
PROPS
-- -------------------------------------------------------------------------
PVTW
-- Item 1: pressure reference (psia)
-- Item 2: water FVF (rb per bbl or rb per stb)
-- Item 3: water compressibility (psi^{-1})
-- Item 4: water viscosity (cp)
-- Item 5: water 'viscosibility' (psi^{-1})
-- Using values from Norne:
-- In METRIC units:
-- 277.0 1.038 4.67E-5 0.318 0.0 /
-- In FIELD units:
4017.55 1.038 3.22E-6 0.318 0.0 /
ROCK
-- Item 1: reference pressure (psia)
-- Item 2: rock compressibility (psi^{-1})
-- Using values from table 1 in Odeh:
14.7 3E-6 /
SWOF
-- Column 1: water saturation
-- - this has been set to (almost) equally spaced values from 0.12 to 1
-- Column 2: water relative permeability
-- - generated from the Corey-type approx. formula
-- the coeffisient is set to 10e-5, S_{orw}=0 and S_{wi}=0.12
-- Column 3: oil relative permeability when only oil and water are present
-- - we will use the same values as in column 3 in SGOF.
-- This is not really correct, but since only the first
-- two values are of importance, this does not really matter
-- Column 4: corresponding water-oil capillary pressure (psi)
0.12 0 1 0
0.18 4.64876033057851E-008 1 0
0.24 0.000000186 0.997 0
0.3 4.18388429752066E-007 0.98 0
0.36 7.43801652892562E-007 0.7 0
0.42 1.16219008264463E-006 0.35 0
0.48 1.67355371900826E-006 0.2 0
0.54 2.27789256198347E-006 0.09 0
0.6 2.97520661157025E-006 0.021 0
0.66 3.7654958677686E-006 0.01 0
0.72 4.64876033057851E-006 0.001 0
0.78 0.000005625 0.0001 0
0.84 6.69421487603306E-006 0 0
0.91 8.05914256198347E-006 0 0
1 0.00001 0 0 /
DENSITY
-- Density (lb per ft³) at surface cond. of
-- oil, water and gas, respectively (in that order)
-- Using values from Norne:
-- In METRIC units:
-- 859.5 1033.0 /
-- In FIELD units:
53.66 64.49 /
PVDO
-- Column 1: dissolved gas-oil ratio (Mscf per stb)
-- Column 2: bubble point pressure (psia)
-- Column 3: oil FVF for saturated oil (rb per stb)
-- Column 4: oil viscosity for saturated oil (cP)
-- Use values from top left table in Odeh's table 2:
14.7 2.0000 0.2000
5014.7 1.8270 0.4490
9014.7 1.7370 0.6310 /
-- It is required to enter data for undersaturated oil for the highest GOR
-- (i.e. the last row) in the PVTO table.
-- In order to fulfill this requirement, values for oil FVF and viscosity
-- at 9014.7psia and GOR=1.618 for undersaturated oil have been approximated:
-- It has been assumed that there is a linear relation between the GOR
-- and the FVF when keeping the pressure constant at 9014.7psia.
-- From Odeh we know that (at 9014.7psia) the FVF is 2.357 at GOR=2.984
-- for saturated oil and that the FVF is 1.579 at GOR=1.27 for undersaturated oil,
-- so it is possible to use the assumption described above.
-- An equivalent approximation for the viscosity has been used.
/
SOLUTION
-- -------------------------------------------------------------------------
EQUIL
-- Item 1: datum depth (ft)
-- Item 2: pressure at datum depth (psia)
-- - Odeh's table 1 says that initial reservoir pressure is
-- 4800 psi at 8400ft, which explains choice of item 1 and 2
-- Item 3: depth of water-oil contact (ft)
-- - chosen to be directly under the reservoir
-- Item 4: oil-water capillary pressure at the water oil contact (psi)
-- - given to be 0 in Odeh's paper
-- Item 5: depth of gas-oil contact (ft)
-- - chosen to be directly above the reservoir
-- Item 6: gas-oil capillary pressure at gas-oil contact (psi)
-- - given to be 0 in Odeh's paper
-- Item 7: RSVD-table
-- Item 8: RVVD-table
-- Item 9: Set to 0 as this is the only value supported by OPM
-- Item #: 1 2 3 4 5 6 7 8 9
8400 4800 8450 0 8300 0 1 0 0 /
SUMMARY
-- -------------------------------------------------------------------------
-- 1a) Oil rate vs time
FOPR
-- Field Oil Production Rate
-- 2a) Pressures of the cell where the injector and producer are located
BPR
1 1 1 /
10 10 3 /
/
-- In order to compare Eclipse with Flow:
WBHP
'INJ'
'PROD'
/
WOIR
'INJ'
'PROD'
/
WOIT
'INJ'
'PROD'
/
WOPR
'INJ'
'PROD'
/
WOPT
'INJ'
'PROD'
/
WWIR
'INJ'
'PROD'
/
WWIT
'INJ'
'PROD'
/
WWPR
'INJ'
'PROD'
/
WWPT
'INJ'
'PROD'
/
SCHEDULE
-- -------------------------------------------------------------------------
RPTSCHED
'PRES' 'WELLS' /
RPTRST
'BASIC=1' /
-- If no resolution (i.e. case 1), the two following lines must be added:
--DRSDT
-- 0 /
-- Since this is Case 2, the two lines above have been commented out.
-- if DRSDT is set to 0, GOR cannot rise and free gas does not
-- dissolve in undersaturated oil -> constant bubble point pressure
WELSPECS
-- Item #: 1 2 3 4 5 6
'PROD' 'G1' 10 10 8400 'OIL' /
'INJ' 'G1' 1 1 8335 'WAT' /
/
-- Coordinates in item 3-4 are retrieved from Odeh's figure 1 and 2
-- Note that the depth at the midpoint of the well grid blocks
-- has been used as reference depth for bottom hole pressure in item 5
COMPDAT
-- Item #: 1 2 3 4 5 6 7 8 9
'PROD' 10 10 1 1 'OPEN' 1* 1* 0.5 /
'INJ' 1 1 3 3 'OPEN' 1* 1* 0.5 /
/
-- Coordinates in item 2-5 are retreived from Odeh's figure 1 and 2
-- Item 9 is the well bore internal diameter,
-- the radius is given to be 0.25ft in Odeh's paper
WCONPROD
-- Item #:1 2 3 4 5 9
'PROD' 'OPEN' 'ORAT' 20000 4* 1000 /
/
-- It is stated in Odeh's paper that the maximum oil prod. rate
-- is 20 000stb per day which explains the choice of value in item 4.
-- The items > 4 are defaulted with the exception of item 9,
-- the BHP lower limit, which is given to be 1000psia in Odeh's paper
WCONINJE
-- Item #:1 2 3 4 5 6 7
'INJ' 'WATER' 'OPEN' 'RATE' 1000 1* 9014 /
/
-- Stated in Odeh that gas inj. rate (item 5) is 100MMscf per day
-- BHP upper limit (item 7) should not be exceeding the highest
-- pressure in the PVT table=9014.7psia (default is 100 000psia)
TSTEP
--Advance the simulater once a month for TEN years:
31 28 31 30 31 30 31 31 30 31 30 31
31 28 31 30 31 30 31 31 30 31 30 31
31 28 31 30 31 30 31 31 30 31 30 31
31 28 31 30 31 30 31 31 30 31 30 31
31 28 31 30 31 30 31 31 30 31 30 31
31 28 31 30 31 30 31 31 30 31 30 31
31 28 31 30 31 30 31 31 30 31 30 31
31 28 31 30 31 30 31 31 30 31 30 31
31 28 31 30 31 30 31 31 30 31 30 31
31 28 31 30 31 30 31 31 30 31 30 31 /
--Advance the simulator once a year for TEN years:
--10*365 /
END