499 lines
15 KiB
Plaintext
499 lines
15 KiB
Plaintext
-- This reservoir simulation deck is made available under the Open Database
|
|
-- License: http://opendatacommons.org/licenses/odbl/1.0/. Any rights in
|
|
-- individual contents of the database are licensed under the Database Contents
|
|
-- License: http://opendatacommons.org/licenses/dbcl/1.0/
|
|
|
|
-- Copyright (C) 2015 Statoil
|
|
|
|
-- This simulation is based on the data given in
|
|
-- 'Third SPE Comparative Solution Project: Gas
|
|
-- Cycling of Retrograde Condensate Reservoirs'
|
|
-- by D.E. Kenyon and G.A. Behie,
|
|
-- Journal of Petroleum Technology, August 1987
|
|
|
|
----------------------------------------------------------------
|
|
------------------ SPE 3, CASE 2 -------------------------------
|
|
----------------------------------------------------------------
|
|
|
|
RUNSPEC
|
|
-- -------------------------------------------------------------
|
|
|
|
TITLE
|
|
SPE 3 - CASE 2
|
|
DIMENS
|
|
9 9 4 /
|
|
OIL
|
|
GAS
|
|
WATER
|
|
VAPOIL
|
|
DISGAS
|
|
|
|
FIELD
|
|
|
|
START
|
|
1 'JAN' 2015 /
|
|
|
|
WELLDIMS
|
|
-- Item 1: maximum number of wells in the model
|
|
-- - there are two wells in the problem; injector and producer
|
|
-- Item 2: maximum number of grid blocks connected to any one well
|
|
-- - must be two as both wells are located at two grid blocks
|
|
-- Item 3: maximum number of groups in the model
|
|
-- - we are dealing with only one 'group'
|
|
-- Item 4: maximum number of wells in any one group
|
|
-- - there must be two wells in a group as there are two wells in total
|
|
2 2 1 2 /
|
|
|
|
TABDIMS
|
|
-- The max number of saturation and pressure nodes in the PROPS-tables
|
|
-- exceeds the default -> item 3 and 4 in TABDIMS must be changed
|
|
1* 1* 30 30 /
|
|
|
|
EQLDIMS
|
|
/
|
|
|
|
|
|
UNIFOUT
|
|
|
|
GRID
|
|
-- ---------------------------------------------------------------
|
|
-- The values in this section are retrieved from table 2
|
|
-- and figure 1 in Kenyon & Behie
|
|
NOECHO
|
|
DX
|
|
-- There are in total 324 cells with length 293.3ft in x-direction
|
|
324*293.3 /
|
|
DY
|
|
-- There are in total 324 cells with length 293.3ft in y-direction
|
|
324*293.3 /
|
|
DZ
|
|
-- The layers are 30, 30, 50 and 50 ft thick
|
|
-- In each layer there are 81 cells
|
|
81*30 81*30 81*50 81*50 /
|
|
|
|
TOPS
|
|
-- The depth of the top of each grid block
|
|
-- 81*7315 81*7345 81*7375 81*7425 /
|
|
81*7315 /
|
|
|
|
PORO
|
|
-- Constant porosity of 0.3 throughout all 324 grid cells
|
|
324*0.13 /
|
|
|
|
PERMX
|
|
-- The layers have horizontal (meaning x- and y-direction) permeability
|
|
-- of 130mD, 40mD, 20mD and 150, respectively, from top to bottom layer.
|
|
81*130 81*40 81*20 81*150 /
|
|
|
|
PERMY
|
|
81*130 81*40 81*20 81*150 /
|
|
|
|
PERMZ
|
|
-- z-direction permeability is 13mD, 4mD, 2mD and 15mD, respectively, from top
|
|
-- to bottom layer
|
|
81*13 81*4 81*2 81*15 /
|
|
ECHO
|
|
|
|
PROPS
|
|
-- -------------------------------------------------------------
|
|
|
|
ROCK
|
|
-- Item 1: reference pressure (psia)
|
|
-- Item 2: rock compressibility (psi^{-1})
|
|
|
|
-- Using values from table 2 in Kenyon & Behie:
|
|
3550 4e-6 /
|
|
|
|
|
|
SGOF
|
|
-- Values taken from Kenyon & Behie's table 2
|
|
-- Sg Krg Kro(g) Pc
|
|
-- (first val 0) (first val 0) (only oil, gas & con. water) (for oil-gas)
|
|
0.00 0.00 0.800 0
|
|
0.04 0.005 0.650 0
|
|
0.08 0.013 0.513 0
|
|
0.12 0.026 0.400 0
|
|
0.16 0.040 0.315 0
|
|
0.20 0.058 0.250 0
|
|
0.24 0.078 0.196 0
|
|
0.28 0.100 0.150 0
|
|
0.32 0.126 0.112 0
|
|
0.36 0.156 0.082 0
|
|
0.40 0.187 0.060 0
|
|
0.44 0.222 0.040 0
|
|
0.48 0.260 0.024 0
|
|
0.52 0.300 0.012 0
|
|
0.56 0.348 0.005 0
|
|
0.60 0.400 0 0
|
|
0.64 0.450 0 0
|
|
0.68 0.505 0 0
|
|
0.72 0.562 0 0
|
|
0.76 0.620 0 0
|
|
0.80 0.680 0 0
|
|
0.84 0.740 0 0 /
|
|
-- Since Kenyon & Behie say that 'Relative permeability data were
|
|
-- based on the simplistic assumption that the rel. perm. of
|
|
-- any phase depends only on its saturation', the Kro values
|
|
-- depend only on So, which is 1-Sg-Swc when only
|
|
-- oil, gas and connate water are present. Swc=0.16 (= Swi here)
|
|
SWOF
|
|
-- Values taken from Kenyon & Behie's table 2
|
|
-- Sw Krw 0 Kro(w) Pc
|
|
-- (first val is (first val 0) (only oil & water) (for water-oil)
|
|
-- connate water sat) (first val must be Krog at Sg=0)
|
|
0.16 0.00 0.800 50
|
|
0.20 0.002 0.650 32
|
|
0.24 0.010 0.513 21
|
|
0.28 0.020 0.400 15.5
|
|
0.32 0.033 0.315 12.0
|
|
0.36 0.049 0.250 9.2
|
|
0.40 0.066 0.196 7.0
|
|
0.44 0.090 0.150 5.3
|
|
0.48 0.119 0.112 4.2
|
|
0.52 0.150 0.082 3.4
|
|
0.56 0.186 0.060 2.7
|
|
0.60 0.227 0.040 2.1
|
|
0.64 0.277 0.024 1.7
|
|
0.68 0.330 0.012 1.3
|
|
0.72 0.390 0.005 1.0
|
|
0.76 0.462 0 0.7
|
|
0.80 0.540 0 0.5
|
|
0.84 0.620 0 0.4
|
|
0.88 0.710 0 0.3
|
|
0.92 0.800 0 0.2
|
|
0.96 0.900 0 0.1
|
|
1.00 1.000 0 0.0 /
|
|
-- The Kro values depend only on So, which is 1-Sw when
|
|
-- only oil and water are present
|
|
-- Since we know Pcgw and since Pcog=0, we can conclude that Pcwo
|
|
-- should be equal to Pcgw
|
|
|
|
-------------------- START OF PVTsim GENERATED VALUES -------------------------
|
|
-- Generated with PVTsim version 21.0.0 at 03.07.2015 10:04:27
|
|
--#FIELD
|
|
-- Salinity (mg/l)
|
|
-- 0.0
|
|
--
|
|
DENSITY
|
|
-- OilDens WaterDens GasDens
|
|
-- lb/ft3 lb/ft3 lb/ft3
|
|
43.33 62.37 0.05850 /
|
|
--
|
|
PVTW
|
|
-- RefPres Bw Cw Vw dVw
|
|
-- psia rb/stb 1/psia cP 1/psia
|
|
3427.6 1.02629 0.30698E-05 0.31107 0.59410E-05 /
|
|
--
|
|
-- Separator Conditions (from table 3 in Kenyon & Behie's paper)
|
|
-- Tsep(F) Psep(psia)
|
|
-- ---------- ----------
|
|
-- 80.00 815.00
|
|
-- 80.00 315.00
|
|
-- 80.00 65.00
|
|
-- 59.00 14.70
|
|
--
|
|
-- Reservoir temperature (F)
|
|
-- 200.00
|
|
--
|
|
-- Experiment type: Constant Mass Expansion
|
|
--
|
|
------------------------------------------------------------
|
|
--SOLUTION PRESSURE OIL FVF OIL
|
|
-- GOR Rs Po Bo VISCOSITY
|
|
--MSCF/STB psia RB/STB cP
|
|
------------------------------------------------------------
|
|
PVTO
|
|
0.189473 500.0 1.20936 0.219
|
|
1000.0 1.19352 0.240
|
|
1500.0 1.17997 0.260
|
|
2000.0 1.16819 0.279
|
|
2500.0 1.15780 0.299
|
|
3000.0 1.14853 0.318
|
|
3427.6 1.14135 0.334
|
|
3500.0 1.14019 0.337
|
|
4000.0 1.13263 0.356
|
|
4500.0 1.12574 0.374
|
|
5000.0 1.11941 0.393 /
|
|
0.479365 1000.0 1.40215 0.149
|
|
1500.0 1.37754 0.164
|
|
2000.0 1.35701 0.179
|
|
2500.0 1.33949 0.194
|
|
3000.0 1.32426 0.208
|
|
3427.6 1.31270 0.220
|
|
3500.0 1.31085 0.222
|
|
4000.0 1.29891 0.237
|
|
4500.0 1.28817 0.251
|
|
5000.0 1.27845 0.265 /
|
|
0.826985 1500.0 1.62448 0.113
|
|
2000.0 1.58913 0.124
|
|
2500.0 1.56020 0.135
|
|
3000.0 1.53584 0.146
|
|
3427.6 1.51777 0.156
|
|
3500.0 1.51492 0.157
|
|
4000.0 1.49666 0.168
|
|
4500.0 1.48052 0.179
|
|
5000.0 1.46610 0.190 /
|
|
1.250165 2000.0 1.89110 0.089
|
|
2500.0 1.84197 0.098
|
|
3000.0 1.80234 0.107
|
|
3427.6 1.77380 0.114
|
|
3500.0 1.76937 0.115
|
|
4000.0 1.74128 0.124
|
|
4500.0 1.71695 0.132
|
|
5000.0 1.69557 0.141 /
|
|
1.794854 2500.0 2.23421 0.073
|
|
3000.0 2.16656 0.080
|
|
3427.6 2.11974 0.086
|
|
3500.0 2.11259 0.087
|
|
4000.0 2.06805 0.093
|
|
4500.0 2.03039 0.100
|
|
5000.0 1.99794 0.106 /
|
|
2.549781 3000.0 2.71411 0.071
|
|
3427.6 2.63221 0.076
|
|
3500.0 2.61998 0.077
|
|
4000.0 2.54537 0.083
|
|
4500.0 2.48418 0.089
|
|
5000.0 2.43271 0.094 /
|
|
2.951016 3427.6 2.96669 0.068
|
|
3500.0 2.94777 0.069
|
|
4000.0 2.83495 0.075
|
|
4500.0 2.74550 0.080
|
|
5000.0 2.67220 0.085 /
|
|
3.033715 3500.0 3.01897 0.068
|
|
4000.0 2.90343 0.073
|
|
4500.0 2.81181 0.079
|
|
5000.0 2.73675 0.084 /
|
|
3.605023 4000.0 3.38017 0.065
|
|
4500.0 3.27351 0.070
|
|
5000.0 3.18612 0.075 /
|
|
/
|
|
------------------------------------------------------------
|
|
--PRESSURE VAPORIZED GAS FVF GAS
|
|
-- Pg OGR Rv Bg VISCOSITY
|
|
-- psia STB/MSCF RB/MSCF cP
|
|
------------------------------------------------------------
|
|
PVTG
|
|
500.0 0.0382886993 6.419987 0.012999 /
|
|
1000.0 0.0314227763 3.007969 0.014122 /
|
|
1500.0 0.0357629796 1.922602 0.015848 /
|
|
2000.0 0.0473304978 1.408289 0.018550 /
|
|
2500.0 0.0679314005 1.123337 0.022691 /
|
|
3000.0 0.1043958616 0.959755 0.029087 /
|
|
3427.6 0.1670518252 0.893267 0.038650 /
|
|
3500.0 0.1670518252 0.884653 0.039158 /
|
|
4000.0 0.1670518252 0.834785 0.042494
|
|
0.1043958616 0.809080 0.035345
|
|
0.0679314005 0.798204 0.031649
|
|
0.0473304978 0.792752 0.029766
|
|
0.0357629796 0.789094 0.028868
|
|
0.0314227763 0.786258 0.028754
|
|
0.0000000000 0.773146 0.026778 /
|
|
/
|
|
|
|
--Warning: Constant reservoir fluid composition assumed above 3428. psia
|
|
--Tabulated properties corrected to be monotonic with pressure
|
|
|
|
-------------------- END OF PVTsim GENERATED VALUES -------------------------
|
|
|
|
|
|
SOLUTION
|
|
|
|
EQUIL
|
|
-- Item 1: datum depth (ft)
|
|
-- - Datum depth is at 7500ft (table 2, Kenyon & Behie)
|
|
-- Item 2: pressure at datum depth (psia)
|
|
-- - This is 3550psia (table 2, Kenyon & Behie)
|
|
-- Item 3: depth of water-oil contact
|
|
-- - See comment under item 5
|
|
-- Item 4: oil-water capillary pressure at the water-oil contact
|
|
-- - Cap. pres. at gas-water contact is 0 (table 2, Kenyon & Behie)
|
|
-- - Cap. pres. for gas-oil is assumed 0 (table 2, Kenyon & Behie)
|
|
-- - This means oil-water cap. pres. is 0 at contact
|
|
-- Item 5: depth of gas-oil contact (ft)
|
|
-- - Since all oil is initially contained in the gas phase,
|
|
-- we can set item 5 equal to item 3, which must be
|
|
-- set to the gas-water contact (since we have assumed no oil)
|
|
-- The gas-water contact is at 7500ft (table 2, Kenyon & Behie)
|
|
-- Item 6: gas-oil capillary pressure at gas-oil contact (psi)
|
|
-- - Kenyon & Behie say this is assumed to be zero
|
|
-- Item 7: RSVD-table
|
|
-- Item 8: RVVD-table
|
|
-- Item 9: must set to 0 as only this is supported in OPM
|
|
|
|
-- Item #: 1 2 3 4 5 6 7 8 9
|
|
7500 3550 7500 0 7500 0 0 0 0 /
|
|
--
|
|
SUMMARY
|
|
|
|
WOPR
|
|
'PROD'
|
|
/
|
|
|
|
FOPR
|
|
|
|
WOPT
|
|
'PROD'
|
|
/
|
|
|
|
FOPT
|
|
|
|
BOSAT
|
|
-- Oil Saturation in lower cell block of production well
|
|
7 7 4 /
|
|
/
|
|
|
|
BRS
|
|
7 7 4 /
|
|
1 1 1 /
|
|
9 9 1 /
|
|
9 1 4 /
|
|
1 9 1 /
|
|
4 4 4 /
|
|
/
|
|
|
|
-- In order to compare Eclipse with Flow:
|
|
WBHP
|
|
'INJ'
|
|
'PROD'
|
|
/
|
|
WGIR
|
|
'INJ'
|
|
'PROD'
|
|
/
|
|
-- $$$ WGIT
|
|
-- $$$ 'INJ'
|
|
-- $$$ 'PROD'
|
|
-- $$$ /
|
|
WGPR
|
|
'INJ'
|
|
'PROD'
|
|
/
|
|
-- $$$ WGPT
|
|
-- $$$ 'INJ'
|
|
-- $$$ 'PROD'
|
|
-- $$$ /
|
|
WOIR
|
|
'INJ'
|
|
'PROD'
|
|
/
|
|
-- $$$ WOIT
|
|
-- $$$ 'INJ'
|
|
-- $$$ 'PROD'
|
|
-- $$$ /
|
|
-- $$$ WOPR
|
|
-- $$$ 'INJ'
|
|
-- $$$ 'PROD'
|
|
-- $$$ /
|
|
-- $$$ WOPT
|
|
-- $$$ 'INJ'
|
|
-- $$$ 'PROD'
|
|
-- $$$ /
|
|
WWIR
|
|
'INJ'
|
|
'PROD'
|
|
/
|
|
-- $$$ WWIT
|
|
-- $$$ 'INJ'
|
|
-- $$$ 'PROD'
|
|
-- $$$ /
|
|
WWPR
|
|
'INJ'
|
|
'PROD'
|
|
/
|
|
-- $$$ WWPT
|
|
-- $$$ 'INJ'
|
|
-- $$$ 'PROD'
|
|
-- $$$ /
|
|
|
|
SCHEDULE
|
|
|
|
RPTRST
|
|
'BASIC=4' /
|
|
|
|
--DRSDT
|
|
-- 0 /
|
|
-- GOR cannot rise and free gas does not dissolve in undersaturated
|
|
-- oil when setting DRSDT to 0,
|
|
-- Notice that all GOR curves are decreasing
|
|
-- -> adding DRSDT=0 should not make difference
|
|
-- No difference in BOSAT, FOPR and FOPT graphs when including DRSDT=0
|
|
|
|
WELSPECS
|
|
-- Item #: 1 2 3 4 5 6
|
|
'PROD' 'G1' 7 7 7375 'GAS' /
|
|
'INJ' 'G1' 1 1 7315 'GAS' /
|
|
/
|
|
-- The coordinates in item 3-4 are retrieved from figure 1 in Kenyon & Behie
|
|
-- Ref. manual says the top-most perforation of the well is the
|
|
-- recommended value for datum depth for BHP (item 5), which are the values
|
|
-- that are entered above
|
|
-- Both oil and gas are produced, and 'GAS' has been chosen as preferred
|
|
-- phase (item 6) for PROD. All graphs will be identical if choosing OIL
|
|
|
|
COMPDAT
|
|
-- Item #: 1 2 3 4 5 6 7 8 9
|
|
'PROD' 7 7 3 4 'OPEN' 1* 1* 2 /
|
|
'INJ' 1 1 1 2 'OPEN' 1* 1* 2 /
|
|
/
|
|
-- The coordinates in item 2-5 are retrieved from figure 1 in Kenyon & Behie
|
|
-- Item 9 is the well bore internal diameter,
|
|
-- the radius is given to be 1ft in Kenyon & Behie's paper
|
|
|
|
|
|
WCONPROD
|
|
-- Item #: 1 2 3 6 9
|
|
'PROD' 'OPEN' 'GRAT' 2* 6200 2* 500 /
|
|
/
|
|
-- It is stated in Kenyon & Behie's table 3 that the production is
|
|
-- controlled by a separator gas rate of 6200Mscf per day (item 6)
|
|
-- Kenyon & Behie also say that min BHP is 500psi (item 9)
|
|
|
|
WCONINJE
|
|
-- Item #: 1 2 3 4 5 6 7
|
|
'INJ' 'GAS' 'OPEN' 'RATE' 5700 1* 4000 /
|
|
/
|
|
-- In Case 2, Kenyon & Behie require a constant recycle-gas rate of
|
|
-- 5700Mscf per day (item 5) for the first 5 years
|
|
-- Kenyon & Behie say max BHP is 4000psi (item 7)
|
|
|
|
TSTEP
|
|
-- first year:
|
|
7*52.14285714
|
|
-- next four years:
|
|
31 28 31 30 31 30 31 31 30 31 30 31
|
|
31 28 31 30 31 30 31 31 30 31 30 31
|
|
31 28 31 30 31 30 31 31 30 31 30 31
|
|
31 28 31 30 31 30 31 31 30 31 30 31 /
|
|
|
|
-- For the next 5 years, item 5 in WCONINJE must be changed to 3700Mscf per day:
|
|
WCONINJE
|
|
-- Item #: 1 2 3 4 5 6 7
|
|
'INJ' 'GAS' 'OPEN' 'RATE' 3700 1* 4000 /
|
|
/
|
|
|
|
TSTEP
|
|
31 28 31 30 31 30 31 31 30 31 30 31
|
|
31 28 31 30 31 30 31 31 30 31 30 31
|
|
31 28 31 30 31 30 31 31 30 31 30 31
|
|
31 28 31 30 31 30 31 31 30 31 30 31
|
|
31 28 31 30 31 30 31 31 30 31 30 31 /
|
|
|
|
|
|
-- The cycling period ends after ten years,
|
|
-- so we need to set item 5 in WCONINJE to 0:
|
|
WCONINJE
|
|
-- Item #: 1 2 3 4 5 6 7
|
|
'INJ' 'GAS' 'OPEN' 'RATE' 0 1* 4000 /
|
|
/
|
|
|
|
TSTEP
|
|
-- Advance the simulator once a month for next 5 years
|
|
-- because Kenyon & Behie say models are to run for a total of 15 years
|
|
31 28 31 30 31 30 31 31 30 31 30 31
|
|
31 28 31 30 31 30 31 31 30 31 30 31
|
|
31 28 31 30 31 30 31 31 30 31 30 31
|
|
31 28 31 30 31 30 31 31 30 31 30 31
|
|
31 28 31 30 31 30 31 31 30 31 30 31 /
|
|
|
|
|
|
END |