mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-12-30 11:06:55 -06:00
359 lines
10 KiB
C++
359 lines
10 KiB
C++
|
/*
|
||
|
Copyright 2015 SINTEF ICT, Applied Mathematics.
|
||
|
|
||
|
This file is part of the Open Porous Media project (OPM).
|
||
|
|
||
|
OPM is free software: you can redistribute it and/or modify
|
||
|
it under the terms of the GNU General Public License as published by
|
||
|
the Free Software Foundation, either version 3 of the License, or
|
||
|
(at your option) any later version.
|
||
|
|
||
|
OPM is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
GNU General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU General Public License
|
||
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||
|
*/
|
||
|
|
||
|
|
||
|
#ifndef OPM_AUTODIFF_VFPHELPERS_HPP_
|
||
|
#define OPM_AUTODIFF_VFPHELPERS_HPP_
|
||
|
|
||
|
|
||
|
#include <opm/parser/eclipse/EclipseState/Tables/VFPProdTable.hpp>
|
||
|
|
||
|
|
||
|
/**
|
||
|
* This file contains a set of helper functions used by VFPProd / VFPInj.
|
||
|
*/
|
||
|
namespace Opm {
|
||
|
namespace detail {
|
||
|
|
||
|
|
||
|
typedef VFPProdProperties::ADB ADB;
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Returns zero if input value is NaN
|
||
|
*/
|
||
|
inline double zeroIfNan(const double& value) {
|
||
|
return (std::isnan(value)) ? 0.0 : value;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Returns zero for every entry in the ADB which is NaN
|
||
|
*/
|
||
|
inline ADB zeroIfNan(const ADB& values) {
|
||
|
Selector<ADB::V::Scalar> not_nan_selector(values.value(), Selector<ADB::V::Scalar>::NotNaN);
|
||
|
|
||
|
const ADB::V z = ADB::V::Zero(values.size());
|
||
|
const ADB zero = ADB::constant(z, values.blockPattern());
|
||
|
|
||
|
ADB retval = not_nan_selector.select(values, zero);
|
||
|
return retval;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Computes the flo parameter according to the flo_type_
|
||
|
* @return Production rate of oil, gas or liquid.
|
||
|
*/
|
||
|
template <typename T>
|
||
|
static T getFlo(const T& aqua, const T& liquid, const T& vapour,
|
||
|
const VFPProdTable::FLO_TYPE& type) {
|
||
|
switch (type) {
|
||
|
case VFPProdTable::FLO_OIL:
|
||
|
//Oil = liquid phase
|
||
|
return liquid;
|
||
|
case VFPProdTable::FLO_LIQ:
|
||
|
//Liquid = aqua + liquid phases
|
||
|
return aqua + liquid;
|
||
|
case VFPProdTable::FLO_GAS:
|
||
|
//Gas = vapor phase
|
||
|
return vapour;
|
||
|
case VFPProdTable::FLO_INVALID: //Intentional fall-through
|
||
|
default:
|
||
|
OPM_THROW(std::logic_error, "Invalid FLO_TYPE: '" << type << "'");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Computes the wfr parameter according to the wfr_type_
|
||
|
* @return Production rate of oil, gas or liquid.
|
||
|
*/
|
||
|
template <typename T>
|
||
|
static T getWFR(const T& aqua, const T& liquid, const T& vapour,
|
||
|
const VFPProdTable::WFR_TYPE& type) {
|
||
|
switch(type) {
|
||
|
case VFPProdTable::WFR_WOR: {
|
||
|
//Water-oil ratio = water / oil
|
||
|
T wor = aqua / liquid;
|
||
|
return zeroIfNan(wor);
|
||
|
}
|
||
|
case VFPProdTable::WFR_WCT:
|
||
|
//Water cut = water / (water + oil)
|
||
|
return zeroIfNan(aqua / (aqua + liquid));
|
||
|
case VFPProdTable::WFR_WGR:
|
||
|
//Water-gas ratio = water / gas
|
||
|
return zeroIfNan(aqua / vapour);
|
||
|
case VFPProdTable::WFR_INVALID: //Intentional fall-through
|
||
|
default:
|
||
|
OPM_THROW(std::logic_error, "Invalid WFR_TYPE: '" << type << "'");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Computes the gfr parameter according to the gfr_type_
|
||
|
* @return Production rate of oil, gas or liquid.
|
||
|
*/
|
||
|
template <typename T>
|
||
|
static T getGFR(const T& aqua, const T& liquid, const T& vapour,
|
||
|
const VFPProdTable::GFR_TYPE& type) {
|
||
|
switch(type) {
|
||
|
case VFPProdTable::GFR_GOR:
|
||
|
// Gas-oil ratio = gas / oil
|
||
|
return zeroIfNan(vapour / liquid);
|
||
|
case VFPProdTable::GFR_GLR:
|
||
|
// Gas-liquid ratio = gas / (oil + water)
|
||
|
return zeroIfNan(vapour / (liquid + aqua));
|
||
|
case VFPProdTable::GFR_OGR:
|
||
|
// Oil-gas ratio = oil / gas
|
||
|
return zeroIfNan(liquid / vapour);
|
||
|
case VFPProdTable::GFR_INVALID: //Intentional fall-through
|
||
|
default:
|
||
|
OPM_THROW(std::logic_error, "Invalid GFR_TYPE: '" << type << "'");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Helper struct for linear interpolation
|
||
|
*/
|
||
|
struct InterpData {
|
||
|
InterpData() : ind_{0, 0}, inv_dist_(0.0), factor_(0.0) {}
|
||
|
int ind_[2]; //[First element greater than or equal to value, Last element smaller than or equal to value]
|
||
|
double inv_dist_; // 1 / distance between the two end points of the segment. Used to calculate derivatives and uses 1.0 / 0.0 = 0.0 as a convention
|
||
|
double factor_; // Interpolation factor
|
||
|
};
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Helper function to find indices etc. for linear interpolation
|
||
|
*/
|
||
|
inline InterpData findInterpData(const double& value, const std::vector<double>& values) {
|
||
|
InterpData retval;
|
||
|
|
||
|
//If we only have one value in our vector, return that
|
||
|
if (values.size() == 1) {
|
||
|
retval.ind_[0] = 0;
|
||
|
retval.ind_[1] = 0;
|
||
|
retval.inv_dist_ = 0.0;
|
||
|
retval.factor_ = 0.0;
|
||
|
}
|
||
|
// Else search in the vector
|
||
|
else {
|
||
|
//First element greater than or equal to value
|
||
|
//Start with the second element, so that floor_iter does not go out of range
|
||
|
//Don't access out-of-range, therefore values.end()-1
|
||
|
auto ceil_iter = std::lower_bound(values.begin()+1, values.end()-1, value);
|
||
|
|
||
|
//Find last element smaller than range
|
||
|
auto floor_iter = ceil_iter-1;
|
||
|
|
||
|
//Find the indices
|
||
|
retval.ind_[0] = floor_iter - values.begin();
|
||
|
retval.ind_[1] = ceil_iter - values.begin();
|
||
|
|
||
|
//Find interpolation ratio
|
||
|
double dist = (*ceil_iter - *floor_iter);
|
||
|
if (std::abs(dist) > 0.0) {
|
||
|
//Possible source for floating point error here if value and floor are large,
|
||
|
//but very close to each other
|
||
|
retval.inv_dist_ = 1.0 / dist;
|
||
|
retval.factor_ = (value-*floor_iter) * retval.inv_dist_;
|
||
|
}
|
||
|
else {
|
||
|
retval.inv_dist_ = 0.0;
|
||
|
retval.factor_ = 0.0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return retval;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Helper function which interpolates data using the indices etc. given in the inputs.
|
||
|
*/
|
||
|
#ifdef __GNUC__
|
||
|
#pragma GCC push_options
|
||
|
#pragma GCC optimize ("unroll-loops")
|
||
|
#endif
|
||
|
inline VFPProdProperties::adb_like interpolate(
|
||
|
const VFPProdTable::array_type& array,
|
||
|
const InterpData& flo_i,
|
||
|
const InterpData& thp_i,
|
||
|
const InterpData& wfr_i,
|
||
|
const InterpData& gfr_i,
|
||
|
const InterpData& alq_i) {
|
||
|
|
||
|
//Values and derivatives in a 5D hypercube
|
||
|
VFPProdProperties::adb_like nn[2][2][2][2][2];
|
||
|
|
||
|
|
||
|
//Pick out nearest neighbors (nn) to our evaluation point
|
||
|
//This is not really required, but performance-wise it may pay off, since the 32-elements
|
||
|
//we copy to (nn) will fit better in cache than the full original table for the
|
||
|
//interpolation below.
|
||
|
//The following ladder of for loops will presumably be unrolled by a reasonable compiler.
|
||
|
for (int t=0; t<=1; ++t) {
|
||
|
for (int w=0; w<=1; ++w) {
|
||
|
for (int g=0; g<=1; ++g) {
|
||
|
for (int a=0; a<=1; ++a) {
|
||
|
for (int f=0; f<=1; ++f) {
|
||
|
//Shorthands for indexing
|
||
|
const int ti = thp_i.ind_[t];
|
||
|
const int wi = wfr_i.ind_[w];
|
||
|
const int gi = gfr_i.ind_[g];
|
||
|
const int ai = alq_i.ind_[a];
|
||
|
const int fi = flo_i.ind_[f];
|
||
|
|
||
|
//Copy element
|
||
|
nn[t][w][g][a][f].value = array[ti][wi][gi][ai][fi];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
//Calculate derivatives
|
||
|
//Note that the derivative of the two end points of a line aligned with the
|
||
|
//"axis of the derivative" are equal
|
||
|
for (int i=0; i<=1; ++i) {
|
||
|
for (int j=0; j<=1; ++j) {
|
||
|
for (int k=0; k<=1; ++k) {
|
||
|
for (int l=0; l<=1; ++l) {
|
||
|
nn[0][i][j][k][l].dthp = (nn[1][i][j][k][l].value - nn[0][i][j][k][l].value) * thp_i.inv_dist_;
|
||
|
nn[i][0][j][k][l].dwfr = (nn[i][1][j][k][l].value - nn[i][0][j][k][l].value) * wfr_i.inv_dist_;
|
||
|
nn[i][j][0][k][l].dgfr = (nn[i][j][1][k][l].value - nn[i][j][0][k][l].value) * gfr_i.inv_dist_;
|
||
|
nn[i][j][k][0][l].dalq = (nn[i][j][k][1][l].value - nn[i][j][k][0][l].value) * alq_i.inv_dist_;
|
||
|
nn[i][j][k][l][0].dflo = (nn[i][j][k][l][1].value - nn[i][j][k][l][0].value) * flo_i.inv_dist_;
|
||
|
|
||
|
nn[1][i][j][k][l].dthp = nn[0][i][j][k][l].dthp;
|
||
|
nn[i][1][j][k][l].dwfr = nn[i][0][j][k][l].dwfr;
|
||
|
nn[i][j][1][k][l].dgfr = nn[i][j][0][k][l].dgfr;
|
||
|
nn[i][j][k][1][l].dalq = nn[i][j][k][0][l].dalq;
|
||
|
nn[i][j][k][l][1].dflo = nn[i][j][k][l][0].dflo;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
double t1, t2; //interpolation variables, so that t1 = (1-t) and t2 = t.
|
||
|
|
||
|
// Remove dimensions one by one
|
||
|
// Example: going from 3D to 2D to 1D, we start by interpolating along
|
||
|
// the z axis first, leaving a 2D problem. Then interpolating along the y
|
||
|
// axis, leaving a 1D, problem, etc.
|
||
|
t2 = flo_i.factor_;
|
||
|
t1 = (1.0-t2);
|
||
|
for (int t=0; t<=1; ++t) {
|
||
|
for (int w=0; w<=1; ++w) {
|
||
|
for (int g=0; g<=1; ++g) {
|
||
|
for (int a=0; a<=1; ++a) {
|
||
|
nn[t][w][g][a][0] = t1*nn[t][w][g][a][0] + t2*nn[t][w][g][a][1];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
t2 = alq_i.factor_;
|
||
|
t1 = (1.0-t2);
|
||
|
for (int t=0; t<=1; ++t) {
|
||
|
for (int w=0; w<=1; ++w) {
|
||
|
for (int g=0; g<=1; ++g) {
|
||
|
nn[t][w][g][0][0] = t1*nn[t][w][g][0][0] + t2*nn[t][w][g][1][0];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
t2 = gfr_i.factor_;
|
||
|
t1 = (1.0-t2);
|
||
|
for (int t=0; t<=1; ++t) {
|
||
|
for (int w=0; w<=1; ++w) {
|
||
|
nn[t][w][0][0][0] = t1*nn[t][w][0][0][0] + t2*nn[t][w][1][0][0];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
t2 = wfr_i.factor_;
|
||
|
t1 = (1.0-t2);
|
||
|
for (int t=0; t<=1; ++t) {
|
||
|
nn[t][0][0][0][0] = t1*nn[t][0][0][0][0] + t2*nn[t][1][0][0][0];
|
||
|
}
|
||
|
|
||
|
t2 = thp_i.factor_;
|
||
|
t1 = (1.0-t2);
|
||
|
nn[0][0][0][0][0] = t1*nn[0][0][0][0][0] + t2*nn[1][0][0][0][0];
|
||
|
|
||
|
return nn[0][0][0][0][0];
|
||
|
}
|
||
|
|
||
|
#ifdef __GNUC__
|
||
|
#pragma GCC pop_options //unroll loops
|
||
|
#endif
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
} // namespace detail
|
||
|
|
||
|
|
||
|
} // namespace
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
#endif /* OPM_AUTODIFF_VFPHELPERS_HPP_ */
|