opm-simulators/opm/core/fluid/BlackoilPropertiesBasic.cpp

266 lines
9.7 KiB
C++
Raw Normal View History

2012-01-17 05:19:50 -06:00
/*
Copyright 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <opm/core/fluid/BlackoilPropertiesBasic.hpp>
#include <opm/core/utility/Units.hpp>
#include <opm/core/utility/ErrorMacros.hpp>
#include <iostream>
namespace Opm
{
BlackoilPropertiesBasic::BlackoilPropertiesBasic(const parameter::ParameterGroup& param,
2012-01-17 05:19:50 -06:00
const int dim,
const int num_cells)
{
double poro = param.getDefault("porosity", 1.0);
using namespace Opm::unit;
using namespace Opm::prefix;
double perm = param.getDefault("permeability", 100.0)*milli*darcy;
2012-01-17 05:19:50 -06:00
rock_.init(dim, num_cells, poro, perm);
pvt_.init(param);
satprops_.init(param);
if (pvt_.numPhases() != satprops_.numPhases()) {
THROW("BlackoilPropertiesBasic::BlackoilPropertiesBasic() - Inconsistent number of phases in pvt data ("
<< pvt_.numPhases() << ") and saturation-dependent function data (" << satprops_.numPhases() << ").");
}
2012-01-17 05:19:50 -06:00
}
BlackoilPropertiesBasic::~BlackoilPropertiesBasic()
{
}
/// \return D, the number of spatial dimensions.
int BlackoilPropertiesBasic::numDimensions() const
{
return rock_.numDimensions();
}
/// \return N, the number of cells.
int BlackoilPropertiesBasic::numCells() const
{
return rock_.numCells();
}
/// \return Array of N porosity values.
const double* BlackoilPropertiesBasic::porosity() const
{
return rock_.porosity();
}
/// \return Array of ND^2 permeability values.
/// The D^2 permeability values for a cell are organized as a matrix,
/// which is symmetric (so ordering does not matter).
const double* BlackoilPropertiesBasic::permeability() const
{
return rock_.permeability();
}
// ---- Fluid interface ----
/// \return P, the number of phases (also the number of components).
int BlackoilPropertiesBasic::numPhases() const
{
return pvt_.numPhases();
}
/// \param[in] n Number of data points.
/// \param[in] p Array of n pressure values.
/// \param[in] z Array of nP surface volume values.
/// \param[in] cells Array of n cell indices to be associated with the p and z values.
/// \param[out] mu Array of nP viscosity values, array must be valid before calling.
/// \param[out] dmudp If non-null: array of nP viscosity derivative values,
/// array must be valid before calling.
void BlackoilPropertiesBasic::viscosity(const int n,
const double* p,
const double* z,
const int* /*cells*/,
double* mu,
double* dmudp) const
{
if (dmudp) {
THROW("BlackoilPropertiesBasic::viscosity() -- derivatives of viscosity not yet implemented.");
} else {
pvt_.mu(n, p, z, mu);
}
}
/// \param[in] n Number of data points.
/// \param[in] p Array of n pressure values.
/// \param[in] z Array of nP surface volume values.
/// \param[in] cells Array of n cell indices to be associated with the p and z values.
/// \param[out] A Array of nP^2 values, array must be valid before calling.
/// The P^2 values for a cell give the matrix A = RB^{-1} which
/// relates z to u by z = Au. The matrices are output in Fortran order.
/// \param[out] dAdp If non-null: array of nP^2 matrix derivative values,
/// array must be valid before calling. The matrices are output
/// in Fortran order.
void BlackoilPropertiesBasic::matrix(const int n,
const double* /*p*/,
const double* /*z*/,
const int* /*cells*/,
double* A,
double* dAdp) const
{
const int np = numPhases();
ASSERT(np <= 2);
double B[2]; // Must be enough since component classes do not handle more than 2.
pvt_.B(1, 0, 0, B);
// Compute A matrix
#pragma omp parallel for
for (int i = 0; i < n; ++i) {
double* m = A + i*np*np;
std::fill(m, m + np*np, 0.0);
// Diagonal entries only.
for (int phase = 0; phase < np; ++phase) {
m[phase + phase*np] = 1.0/B[phase];
}
}
// Derivative of A matrix.
if (dAdp) {
#pragma omp parallel for
for (int i = 0; i < n; ++i) {
double* m = dAdp + i*np*np;
std::fill(m, m + np*np, 0.0);
}
}
#if 0
// This is copied from BlackoilPropertiesFromDeck.
const int np = numPhases();
B_.resize(n*np);
R_.resize(n*np);
if (dAdp) {
dB_.resize(n*np);
dR_.resize(n*np);
pvt_.dBdp(n, p, z, &B_[0], &dB_[0]);
pvt_.dRdp(n, p, z, &R_[0], &dR_[0]);
} else {
pvt_.B(n, p, z, &B_[0]);
pvt_.R(n, p, z, &R_[0]);
}
const int* phase_pos = pvt_.phasePosition();
bool oil_and_gas = pvt_.phaseUsed()[BlackoilPhases::Liquid] &&
pvt_.phaseUsed()[BlackoilPhases::Vapour];
const int o = phase_pos[BlackoilPhases::Liquid];
const int g = phase_pos[BlackoilPhases::Vapour];
// Compute A matrix
#pragma omp parallel for
for (int i = 0; i < n; ++i) {
double* m = A + i*np*np;
std::fill(m, m + np*np, 0.0);
// Diagonal entries.
for (int phase = 0; phase < np; ++phase) {
m[phase + phase*np] = 1.0/B_[i*np + phase];
}
// Off-diagonal entries.
if (oil_and_gas) {
m[o + g*np] = R_[i*np + g]/B_[i*np + g];
m[g + o*np] = R_[i*np + o]/B_[i*np + o];
}
}
// Derivative of A matrix.
if (dAdp) {
#pragma omp parallel for
for (int i = 0; i < n; ++i) {
double* m = dAdp + i*np*np;
std::fill(m, m + np*np, 0.0);
// Diagonal entries.
for (int phase = 0; phase < np; ++phase) {
m[phase + phase*np] = -dB_[i*np + phase]/B_[i*np + phase]*B_[i*np + phase];
}
// Off-diagonal entries.
if (oil_and_gas) {
m[o + g*np] = m[g + g*np]*R_[i*np + g] + dR_[i*np + g]/B_[i*np + g];
m[g + o*np] = m[o + o*np]*R_[i*np + o] + dR_[i*np + o]/B_[i*np + o];
}
}
}
#endif
}
/// \param[in] n Number of data points.
/// \param[in] A Array of nP^2 values, where the P^2 values for a cell give the
/// matrix A = RB^{-1} which relates z to u by z = Au. The matrices
/// are assumed to be in Fortran order, and are typically the result
/// of a call to the method matrix().
/// \param[out] rho Array of nP density values, array must be valid before calling.
void BlackoilPropertiesBasic::density(const int n,
const double* A,
double* rho) const
{
const int np = numPhases();
const double* sdens = pvt_.surfaceDensities();
#pragma omp parallel for
for (int i = 0; i < n; ++i) {
for (int phase = 0; phase < np; ++phase) {
rho[np*i + phase] = 0.0;
for (int comp = 0; comp < np; ++comp) {
rho[np*i + phase] += A[n*np*np + np*phase + comp]*sdens[comp];
}
}
}
}
/// \param[in] n Number of data points.
/// \param[in] s Array of nP saturation values.
/// \param[in] cells Array of n cell indices to be associated with the s values.
/// \param[out] kr Array of nP relperm values, array must be valid before calling.
/// \param[out] dkrds If non-null: array of nP^2 relperm derivative values,
/// array must be valid before calling.
/// The P^2 derivative matrix is
/// m_{ij} = \frac{dkr_i}{ds^j},
/// and is output in Fortran order (m_00 m_10 m_20 m01 ...)
void BlackoilPropertiesBasic::relperm(const int n,
const double* s,
const int* /*cells*/,
double* kr,
double* dkrds) const
{
satprops_.relperm(n, s, kr, dkrds);
}
/// \param[in] n Number of data points.
/// \param[in] s Array of nP saturation values.
/// \param[in] cells Array of n cell indices to be associated with the s values.
/// \param[out] pc Array of nP capillary pressure values, array must be valid before calling.
/// \param[out] dpcds If non-null: array of nP^2 derivative values,
/// array must be valid before calling.
/// The P^2 derivative matrix is
/// m_{ij} = \frac{dpc_i}{ds^j},
/// and is output in Fortran order (m_00 m_10 m_20 m01 ...)
void BlackoilPropertiesBasic::capPress(const int n,
const double* s,
const int* /*cells*/,
double* pc,
double* dpcds) const
{
satprops_.capPress(n, s, pc, dpcds);
2012-01-17 05:19:50 -06:00
}
} // namespace Opm