opm-simulators/opm/simulators/wells/WellHelpers.hpp

252 lines
9.4 KiB
C++
Raw Normal View History

/*
Copyright 2016 SINTEF ICT, Applied Mathematics.
Copyright 2016 Statoil ASA.
Copyright 2020 OPM-OP AS.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_WELLHELPERS_HEADER_INCLUDED
#define OPM_WELLHELPERS_HEADER_INCLUDED
#include <opm/common/OpmLog/OpmLog.hpp>
#include <opm/grid/cpgrid/GridHelpers.hpp>
#include <opm/simulators/wells/ParallelWellInfo.hpp>
#include <dune/istl/bcrsmatrix.hh>
#include <dune/common/dynmatrix.hh>
#include <dune/common/parallel/mpihelper.hh>
#include <vector>
namespace Opm {
namespace wellhelpers
{
/// \brief A wrapper around the B matrix for distributed wells
///
/// For standard wells the B matrix, is basically a multiplication
/// of the equation of the perforated cells followed by a reduction
/// (summation) of these to the well equations.
///
/// This class does that in the functions mv and mmv (from the DUNE
/// matrix interface.
///
/// \tparam Scalar The scalar used for the computation.
template<typename Scalar>
class ParallelStandardWellB
{
public:
using Block = Dune::DynamicMatrix<Scalar>;
using Matrix = Dune::BCRSMatrix<Block>;
2020-12-03 08:34:48 -06:00
ParallelStandardWellB(const Matrix& B, const ParallelWellInfo& parallel_well_info)
: B_(&B), parallel_well_info_(&parallel_well_info)
{}
//! y = A x
template<class X, class Y>
void mv (const X& x, Y& y) const
{
2020-12-03 08:29:12 -06:00
#if !defined(NDEBUG) && HAVE_MPI
// We need to make sure that all ranks are actually computing
// for the same well. Doing this by checking the name of the well.
2020-12-03 08:34:48 -06:00
int cstring_size = parallel_well_info_->name().size()+1;
std::vector<int> sizes(parallel_well_info_->communication().size());
parallel_well_info_->communication().allgather(&cstring_size, 1, sizes.data());
std::vector<int> offsets(sizes.size()+1, 0); //last entry will be accumulated size
std::partial_sum(sizes.begin(), sizes.end(), offsets.begin() + 1);
std::vector<char> cstrings(offsets[sizes.size()]);
bool consistentWells = true;
2020-12-03 08:34:48 -06:00
char* send = const_cast<char*>(parallel_well_info_->name().c_str());
parallel_well_info_->communication().allgatherv(send, cstring_size,
cstrings.data(), sizes.data(),
offsets.data());
for(std::size_t i = 0; i < sizes.size(); ++i)
{
std::string name(cstrings.data()+offsets[i]);
2020-12-03 08:34:48 -06:00
if (name != parallel_well_info_->name())
{
2020-12-03 08:34:48 -06:00
if (parallel_well_info_->communication().rank() == 0)
{
//only one process per well logs, might not be 0 of MPI_COMM_WORLD, though
std::string msg = std::string("Fatal Error: Not all ranks are computing for the same well")
2020-12-03 08:34:48 -06:00
+ " well should be " + parallel_well_info_->name() + " but is "
+ name;
OpmLog::debug(msg);
}
consistentWells = false;
break;
}
}
2020-12-03 08:34:48 -06:00
parallel_well_info_->communication().barrier();
// As not all processes are involved here we need to use MPI_Abort and hope MPI kills them all
if (!consistentWells)
{
MPI_Abort(MPI_COMM_WORLD, 1);
}
#endif
B_->mv(x, y);
2020-12-03 08:34:48 -06:00
if (this->parallel_well_info_->communication().size() > 1)
{
// Only do communication if we must.
// The B matrix is basically a component-wise multiplication
// with a vector followed by a parallel reduction. We do that
// reduction to all ranks computing for the well to save the
// broadcast when applying C^T.
using YField = typename Y::block_type::value_type;
assert(y.size() == 1);
2020-12-07 01:31:10 -06:00
this->parallel_well_info_->communication().template allreduce<std::plus<YField>>(y[0].container().data(),
y[0].container().size());
}
}
//! y = A x
template<class X, class Y>
void mmv (const X& x, Y& y) const
{
2020-12-03 08:34:48 -06:00
if (this->parallel_well_info_->communication().size() == 1)
{
// Do the same thing as before. The else branch
// produces different rounding errors and results
// slightly different iteration counts / well curves
B_->mmv(x, y);
}
else
{
2020-12-03 08:29:12 -06:00
Y temp(y);
mv(x, temp); // includes parallel reduction
y -= temp;
}
}
private:
const Matrix* B_;
2020-12-03 08:34:48 -06:00
const ParallelWellInfo* parallel_well_info_;
};
inline
double computeHydrostaticCorrection(const double well_ref_depth, const double vfp_ref_depth,
const double rho, const double gravity) {
const double dh = vfp_ref_depth - well_ref_depth;
const double dp = rho * gravity * dh;
return dp;
}
/// \brief Sums entries of the diagonal Matrix for distributed wells
template<typename Scalar, typename Comm>
void sumDistributedWellEntries(Dune::DynamicMatrix<Scalar>& mat, Dune::DynamicVector<Scalar>& vec,
const Comm& comm)
{
// DynamicMatrix does not use one contiguous array for storing the data
// but a DynamicVector of DynamicVectors. Hence we need to copy the data
// to contiguous memory for MPI.
if (comm.size() == 1)
{
return;
}
std::vector<Scalar> allEntries;
allEntries.reserve(mat.N()*mat.M()+vec.size());
for(const auto& row: mat)
{
allEntries.insert(allEntries.end(), row.begin(), row.end());
}
allEntries.insert(allEntries.end(), vec.begin(), vec.end());
comm.sum(allEntries.data(), allEntries.size());
auto pos = allEntries.begin();
auto cols = mat.cols();
for(auto&& row: mat)
{
std::copy(pos, pos + cols, &(row[0]));
pos += cols;
}
assert(std::size_t(allEntries.end() - pos) == vec.size());
std::copy(pos, allEntries.end(), &(vec[0]));
}
template <int dim, class C2F, class FC>
std::array<double, dim>
getCubeDim(const C2F& c2f,
FC begin_face_centroids,
int cell)
{
std::array< std::vector<double>, dim > X;
{
const std::vector<double>::size_type
nf = std::distance(c2f[cell].begin(),
c2f[cell].end ());
for (int d = 0; d < dim; ++d) {
X[d].reserve(nf);
}
}
typedef typename C2F::row_type::const_iterator FI;
for (FI f = c2f[cell].begin(), e = c2f[cell].end(); f != e; ++f) {
using Opm::UgGridHelpers::increment;
using Opm::UgGridHelpers::getCoordinate;
const FC& fc = increment(begin_face_centroids, *f, dim);
for (int d = 0; d < dim; ++d) {
X[d].push_back(getCoordinate(fc, d));
}
}
std::array<double, dim> cube;
for (int d = 0; d < dim; ++d) {
typedef std::vector<double>::iterator VI;
typedef std::pair<VI,VI> PVI;
const PVI m = std::minmax_element(X[d].begin(), X[d].end());
cube[d] = *m.second - *m.first;
}
return cube;
}
template <class DenseMatrix>
DenseMatrix transposeDenseDynMatrix(const DenseMatrix& M)
{
DenseMatrix tmp{M.cols(), M.rows()};
for (int i = 0; i < M.rows(); ++i) {
for (int j = 0; j < M.cols(); ++j) {
tmp[j][i] = M[i][j];
}
}
return tmp;
}
} // namespace wellhelpers
}
#endif