opm-simulators/opm/autodiff/ISTLSolverEbos.hpp

582 lines
23 KiB
C++
Raw Normal View History

/*
Copyright 2016 IRIS AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_ISTLSOLVER_EBOS_HEADER_INCLUDED
#define OPM_ISTLSOLVER_EBOS_HEADER_INCLUDED
#include <opm/autodiff/MatrixBlock.hpp>
#include <opm/autodiff/BlackoilAmg.hpp>
#include <opm/autodiff/CPRPreconditioner.hpp>
#include <opm/autodiff/MPIUtilities.hpp>
#include <opm/autodiff/ParallelRestrictedAdditiveSchwarz.hpp>
#include <opm/autodiff/ParallelOverlappingILU0.hpp>
2018-11-12 04:03:54 -06:00
#include <opm/autodiff/ExtractParallelGridInformationToISTL.hpp>
#include <opm/autodiff/BlackoilDetails.hpp>
#include <opm/common/Exceptions.hpp>
#include <opm/core/linalg/ParallelIstlInformation.hpp>
#include <opm/common/utility/platform_dependent/disable_warnings.h>
#include <ewoms/common/parametersystem.hh>
#include <ewoms/common/propertysystem.hh>
#include <dune/istl/scalarproducts.hh>
#include <dune/istl/operators.hh>
#include <dune/istl/preconditioners.hh>
#include <dune/istl/solvers.hh>
#include <dune/istl/owneroverlapcopy.hh>
#include <dune/istl/paamg/amg.hh>
#include <opm/common/utility/platform_dependent/reenable_warnings.h>
BEGIN_PROPERTIES
NEW_TYPE_TAG(FlowIstlSolver, INHERITS_FROM(FlowIstlSolverParams));
NEW_PROP_TAG(Scalar);
NEW_PROP_TAG(GlobalEqVector);
NEW_PROP_TAG(SparseMatrixAdapter);
NEW_PROP_TAG(Indices);
2018-11-12 04:03:54 -06:00
NEW_PROP_TAG(Simulator);
NEW_PROP_TAG(EclWellModel);
END_PROPERTIES
namespace Opm
{
2018-11-12 04:03:54 -06:00
//=====================================================================
// Implementation for ISTL-matrix based operator
//=====================================================================
/*!
\brief Adapter to turn a matrix into a linear operator.
Adapts a matrix to the assembled linear operator interface
*/
template<class M, class X, class Y, class WellModel, bool overlapping >
class WellModelMatrixAdapter : public Dune::AssembledLinearOperator<M,X,Y>
{
typedef Dune::AssembledLinearOperator<M,X,Y> BaseType;
public:
typedef M matrix_type;
typedef X domain_type;
typedef Y range_type;
typedef typename X::field_type field_type;
#if HAVE_MPI
typedef Dune::OwnerOverlapCopyCommunication<int,int> communication_type;
#else
typedef Dune::CollectiveCommunication< int > communication_type;
#endif
#if DUNE_VERSION_NEWER(DUNE_ISTL, 2, 6)
Dune::SolverCategory::Category category() const override
{
return overlapping ?
Dune::SolverCategory::overlapping : Dune::SolverCategory::sequential;
}
#else
enum {
//! \brief The solver category.
category = overlapping ?
Dune::SolverCategory::overlapping :
Dune::SolverCategory::sequential
};
#endif
//! constructor: just store a reference to a matrix
WellModelMatrixAdapter (const M& A,
const M& A_for_precond,
const WellModel& wellMod,
const boost::any& parallelInformation = boost::any() )
: A_( A ), A_for_precond_(A_for_precond), wellMod_( wellMod ), comm_()
{
#if HAVE_MPI
if( parallelInformation.type() == typeid(ParallelISTLInformation) )
{
const ParallelISTLInformation& info =
boost::any_cast<const ParallelISTLInformation&>( parallelInformation);
comm_.reset( new communication_type( info.communicator() ) );
}
#endif
}
virtual void apply( const X& x, Y& y ) const
{
A_.mv( x, y );
// add well model modification to y
wellMod_.apply(x, y );
#if HAVE_MPI
if( comm_ )
comm_->project( y );
#endif
}
// y += \alpha * A * x
virtual void applyscaleadd (field_type alpha, const X& x, Y& y) const
{
A_.usmv(alpha,x,y);
// add scaled well model modification to y
wellMod_.applyScaleAdd( alpha, x, y );
#if HAVE_MPI
if( comm_ )
comm_->project( y );
#endif
}
virtual const matrix_type& getmat() const { return A_for_precond_; }
communication_type* comm()
{
return comm_.operator->();
}
protected:
const matrix_type& A_ ;
const matrix_type& A_for_precond_ ;
const WellModel& wellMod_;
std::unique_ptr< communication_type > comm_;
};
/// This class solves the fully implicit black-oil system by
/// solving the reduced system (after eliminating well variables)
/// as a block-structured matrix (one block for all cell variables) for a fixed
/// number of cell variables np .
/// \tparam MatrixBlockType The type of the matrix block used.
/// \tparam VectorBlockType The type of the vector block used.
/// \tparam pressureIndex The index of the pressure component in the vector
/// vector block. It is used to guide the AMG coarsening.
/// Default is zero.
template <class TypeTag>
class ISTLSolverEbos
{
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, SparseMatrixAdapter) SparseMatrixAdapter;
typedef typename GET_PROP_TYPE(TypeTag, GlobalEqVector) Vector;
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
2018-11-12 04:03:54 -06:00
typedef typename GET_PROP_TYPE(TypeTag, EclWellModel) WellModel;
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename SparseMatrixAdapter::IstlMatrix Matrix;
enum { pressureIndex = Indices::pressureSwitchIdx };
2018-11-12 04:03:54 -06:00
static const int numEq = Indices::numEq;
public:
typedef Dune::AssembledLinearOperator< Matrix, Vector, Vector > AssembledLinearOperatorType;
static void registerParameters()
{
FlowLinearSolverParameters::registerParameters<TypeTag>();
}
/// Construct a system solver.
/// \param[in] parallelInformation In the case of a parallel run
/// with dune-istl the information about the parallelization.
2018-11-12 04:03:54 -06:00
ISTLSolverEbos(const Simulator& simulator)
: simulator_(simulator),
iterations_( 0 ),
converged_(false)
{
parameters_.template init<TypeTag>();
2018-11-12 04:03:54 -06:00
extractParallelGridInformationToISTL(simulator_.vanguard().grid(), parallelInformation_);
detail::findOverlapRowsAndColumns(simulator_.vanguard().grid(),overlapRowAndColumns_);
}
// nothing to clean here
void eraseMatrix() {
matrix_for_preconditioner_.reset();
}
void prepare(const SparseMatrixAdapter& M, Vector& b) {
matrix_ = &M.istlMatrix();
rhs_ = &b;
}
bool solve(Vector& x) {
// Solve system.
const WellModel& wellModel = simulator_.problem().wellModel();
if( isParallel() )
{
typedef WellModelMatrixAdapter< Matrix, Vector, Vector, WellModel, true > Operator;
auto ebosJacIgnoreOverlap = Matrix(*matrix_);
//remove ghost rows in local matrix
makeOverlapRowsInvalid(ebosJacIgnoreOverlap);
//Not sure what actual_mat_for_prec is, so put ebosJacIgnoreOverlap as both variables
//to be certain that correct matrix is used for preconditioning.
Operator opA(ebosJacIgnoreOverlap, ebosJacIgnoreOverlap, wellModel,
parallelInformation_ );
assert( opA.comm() );
solve( opA, x, *rhs_, *(opA.comm()) );
}
else
{
typedef WellModelMatrixAdapter< Matrix, Vector, Vector, WellModel, false > Operator;
Operator opA(*matrix_, *matrix_, wellModel);
solve( opA, x, *rhs_ );
}
return converged_;
}
/// Solve the system of linear equations Ax = b, with A being the
/// combined derivative matrix of the residual and b
/// being the residual itself.
/// \param[in] residual residual object containing A and b.
/// \return the solution x
/// \copydoc NewtonIterationBlackoilInterface::iterations
int iterations () const { return iterations_; }
/// \copydoc NewtonIterationBlackoilInterface::parallelInformation
const boost::any& parallelInformation() const { return parallelInformation_; }
2018-11-12 04:03:54 -06:00
protected:
/// \brief construct the CPR preconditioner and the solver.
/// \tparam P The type of the parallel information.
/// \param parallelInformation the information about the parallelization.
#if DUNE_VERSION_NEWER(DUNE_ISTL, 2, 6)
template<Dune::SolverCategory::Category category=Dune::SolverCategory::sequential,
class LinearOperator, class POrComm>
#else
template<int category=Dune::SolverCategory::sequential, class LinearOperator, class POrComm>
#endif
void constructPreconditionerAndSolve(LinearOperator& linearOperator,
Vector& x, Vector& istlb,
const POrComm& parallelInformation_arg,
Dune::InverseOperatorResult& result) const
{
// Construct scalar product.
#if DUNE_VERSION_NEWER(DUNE_ISTL, 2, 6)
auto sp = Dune::createScalarProduct<Vector,POrComm>(parallelInformation_arg, category);
#else
typedef Dune::ScalarProductChooser<Vector, POrComm, category> ScalarProductChooser;
typedef std::unique_ptr<typename ScalarProductChooser::ScalarProduct> SPPointer;
SPPointer sp(ScalarProductChooser::construct(parallelInformation_arg));
#endif
// Communicate if parallel.
parallelInformation_arg.copyOwnerToAll(istlb, istlb);
#if FLOW_SUPPORT_AMG // activate AMG if either flow_ebos is used or UMFPack is not available
if( parameters_.linear_solver_use_amg_ || parameters_.use_cpr_)
{
typedef ISTLUtility::CPRSelector< Matrix, Vector, Vector, POrComm> CPRSelectorType;
typedef typename CPRSelectorType::Operator MatrixOperator;
std::unique_ptr< MatrixOperator > opA;
if( ! std::is_same< LinearOperator, MatrixOperator > :: value )
{
// create new operator in case linear operator and matrix operator differ
opA.reset( CPRSelectorType::makeOperator( linearOperator.getmat(), parallelInformation_arg ) );
}
const double relax = parameters_.ilu_relaxation_;
const MILU_VARIANT ilu_milu = parameters_.ilu_milu_;
if ( parameters_.use_cpr_ )
{
using Matrix = typename MatrixOperator::matrix_type;
using CouplingMetric = Dune::Amg::Diagonal<pressureIndex>;
using CritBase = Dune::Amg::SymmetricCriterion<Matrix, CouplingMetric>;
using Criterion = Dune::Amg::CoarsenCriterion<CritBase>;
using AMG = typename ISTLUtility
::BlackoilAmgSelector< Matrix, Vector, Vector,POrComm, Criterion, pressureIndex >::AMG;
std::unique_ptr< AMG > amg;
// Construct preconditioner.
Criterion crit(15, 2000);
constructAMGPrecond<Criterion>( linearOperator, parallelInformation_arg, amg, opA, relax, ilu_milu );
// Solve.
solve(linearOperator, x, istlb, *sp, *amg, result);
}
else
{
typedef typename CPRSelectorType::AMG AMG;
std::unique_ptr< AMG > amg;
// Construct preconditioner.
constructAMGPrecond( linearOperator, parallelInformation_arg, amg, opA, relax, ilu_milu );
// Solve.
solve(linearOperator, x, istlb, *sp, *amg, result);
}
}
else
#endif
{
// Construct preconditioner.
auto precond = constructPrecond(linearOperator, parallelInformation_arg);
// Solve.
solve(linearOperator, x, istlb, *sp, *precond, result);
}
}
// 3x3 matrix block inversion was unstable at least 2.3 until and including
// 2.5.0. There may still be some issue with the 4x4 matrix block inversion
// we therefore still use the block inversion in OPM
typedef ParallelOverlappingILU0<Dune::BCRSMatrix<Dune::MatrixBlock<typename Matrix::field_type,
Matrix::block_type::rows,
Matrix::block_type::cols> >,
Vector, Vector> SeqPreconditioner;
template <class Operator>
std::unique_ptr<SeqPreconditioner> constructPrecond(Operator& opA, const Dune::Amg::SequentialInformation&) const
{
const double relax = parameters_.ilu_relaxation_;
const int ilu_fillin = parameters_.ilu_fillin_level_;
const MILU_VARIANT ilu_milu = parameters_.ilu_milu_;
const bool ilu_redblack = parameters_.ilu_redblack_;
const bool ilu_reorder_spheres = parameters_.ilu_reorder_sphere_;
std::unique_ptr<SeqPreconditioner> precond(new SeqPreconditioner(opA.getmat(), ilu_fillin, relax, ilu_milu, ilu_redblack, ilu_reorder_spheres));
return precond;
}
#if HAVE_MPI
typedef Dune::OwnerOverlapCopyCommunication<int, int> Comm;
#if DUNE_VERSION_NEWER_REV(DUNE_ISTL, 2 , 5, 1)
// 3x3 matrix block inversion was unstable from at least 2.3 until and
// including 2.5.0
typedef ParallelOverlappingILU0<Matrix,Vector,Vector,Comm> ParPreconditioner;
#else
typedef ParallelOverlappingILU0<Dune::BCRSMatrix<Dune::MatrixBlock<typename Matrix::field_type,
Matrix::block_type::rows,
Matrix::block_type::cols> >,
Vector, Vector, Comm> ParPreconditioner;
#endif
template <class Operator>
std::unique_ptr<ParPreconditioner>
constructPrecond(Operator& opA, const Comm& comm) const
{
typedef std::unique_ptr<ParPreconditioner> Pointer;
const double relax = parameters_.ilu_relaxation_;
const MILU_VARIANT ilu_milu = parameters_.ilu_milu_;
const bool ilu_redblack = parameters_.ilu_redblack_;
const bool ilu_reorder_spheres = parameters_.ilu_reorder_sphere_;
return Pointer(new ParPreconditioner(opA.getmat(), comm, relax, ilu_milu, ilu_redblack, ilu_reorder_spheres));
}
#endif
template <class LinearOperator, class MatrixOperator, class POrComm, class AMG >
void
constructAMGPrecond(LinearOperator& /* linearOperator */, const POrComm& comm, std::unique_ptr< AMG >& amg, std::unique_ptr< MatrixOperator >& opA, const double relax, const MILU_VARIANT milu) const
{
ISTLUtility::template createAMGPreconditionerPointer<pressureIndex>( *opA, relax, milu, comm, amg );
}
template <class C, class LinearOperator, class MatrixOperator, class POrComm, class AMG >
void
constructAMGPrecond(LinearOperator& /* linearOperator */, const POrComm& comm, std::unique_ptr< AMG >& amg, std::unique_ptr< MatrixOperator >& opA, const double relax,
const MILU_VARIANT milu ) const
{
ISTLUtility::template createAMGPreconditionerPointer<C>( *opA, relax,
comm, amg, parameters_ );
}
/// \brief Solve the system using the given preconditioner and scalar product.
template <class Operator, class ScalarProd, class Precond>
void solve(Operator& opA, Vector& x, Vector& istlb, ScalarProd& sp, Precond& precond, Dune::InverseOperatorResult& result) const
{
// TODO: Revise when linear solvers interface opm-core is done
// Construct linear solver.
// GMRes solver
int verbosity = ( isIORank_ ) ? parameters_.linear_solver_verbosity_ : 0;
if ( parameters_.newton_use_gmres_ ) {
Dune::RestartedGMResSolver<Vector> linsolve(opA, sp, precond,
parameters_.linear_solver_reduction_,
parameters_.linear_solver_restart_,
parameters_.linear_solver_maxiter_,
verbosity);
// Solve system.
linsolve.apply(x, istlb, result);
}
else { // BiCGstab solver
Dune::BiCGSTABSolver<Vector> linsolve(opA, sp, precond,
parameters_.linear_solver_reduction_,
parameters_.linear_solver_maxiter_,
verbosity);
// Solve system.
linsolve.apply(x, istlb, result);
}
}
/// Solve the linear system Ax = b, with A being the
/// combined derivative matrix of the residual and b
/// being the residual itself.
/// \param[in] A matrix A
/// \param[inout] x solution to be computed x
/// \param[in] b right hand side b
void solve(Matrix& A, Vector& x, Vector& b ) const
{
// Parallel version is deactivated until we figure out how to do it properly.
#if HAVE_MPI
if (parallelInformation_.type() == typeid(ParallelISTLInformation))
{
typedef Dune::OwnerOverlapCopyCommunication<int,int> Comm;
const ParallelISTLInformation& info =
boost::any_cast<const ParallelISTLInformation&>( parallelInformation_);
Comm istlComm(info.communicator());
// Construct operator, scalar product and vectors needed.
typedef Dune::OverlappingSchwarzOperator<Matrix, Vector, Vector,Comm> Operator;
Operator opA(A, istlComm);
solve( opA, x, b, istlComm );
}
else
#endif
{
// Construct operator, scalar product and vectors needed.
Dune::MatrixAdapter< Matrix, Vector, Vector> opA( A );
solve( opA, x, b );
}
}
/// Solve the linear system Ax = b, with A being the
/// combined derivative matrix of the residual and b
/// being the residual itself.
/// \param[in] A matrix A
/// \param[inout] x solution to be computed x
/// \param[in] b right hand side b
template <class Operator, class Comm >
void solve(Operator& opA, Vector& x, Vector& b, Comm& comm) const
{
Dune::InverseOperatorResult result;
// Parallel version is deactivated until we figure out how to do it properly.
#if HAVE_MPI
if (parallelInformation_.type() == typeid(ParallelISTLInformation))
{
const size_t size = opA.getmat().N();
const ParallelISTLInformation& info =
boost::any_cast<const ParallelISTLInformation&>( parallelInformation_);
// As we use a dune-istl with block size np the number of components
// per parallel is only one.
info.copyValuesTo(comm.indexSet(), comm.remoteIndices(),
size, 1);
// Construct operator, scalar product and vectors needed.
constructPreconditionerAndSolve<Dune::SolverCategory::overlapping>(opA, x, b, comm, result);
}
else
#endif
{
OPM_THROW(std::logic_error,"this method if for parallel solve only");
}
checkConvergence( result );
}
/// Solve the linear system Ax = b, with A being the
/// combined derivative matrix of the residual and b
/// being the residual itself.
/// \param[in] A matrix A
/// \param[inout] x solution to be computed x
/// \param[in] b right hand side b
template <class Operator>
void solve(Operator& opA, Vector& x, Vector& b ) const
{
Dune::InverseOperatorResult result;
// Construct operator, scalar product and vectors needed.
Dune::Amg::SequentialInformation info;
constructPreconditionerAndSolve(opA, x, b, info, result);
checkConvergence( result );
}
void checkConvergence( const Dune::InverseOperatorResult& result ) const
{
// store number of iterations
iterations_ = result.iterations;
2018-11-12 04:03:54 -06:00
converged_ = result.converged;
// Check for failure of linear solver.
if (!parameters_.ignoreConvergenceFailure_ && !result.converged) {
const std::string msg("Convergence failure for linear solver.");
OPM_THROW_NOLOG(LinearSolverProblem, msg);
}
}
protected:
2018-11-12 04:03:54 -06:00
bool isParallel() const {
#if HAVE_MPI
return parallelInformation_.type() == typeid(ParallelISTLInformation);
#else
return false;
#endif
}
/// Zero out off-diagonal blocks on rows corresponding to overlap cells
/// Diagonal blocks on ovelap rows are set to diag(1e100).
void makeOverlapRowsInvalid(Matrix& ebosJacIgnoreOverlap) const
{
//value to set on diagonal
typedef Dune::FieldMatrix<Scalar, numEq, numEq > MatrixBlockType;
MatrixBlockType diag_block(0.0);
for (int eq = 0; eq < numEq; ++eq)
diag_block[eq][eq] = 1.0e100;
//loop over precalculated overlap rows and columns
for (auto row = overlapRowAndColumns_.begin(); row != overlapRowAndColumns_.end(); row++ )
{
int lcell = row->first;
//diagonal block set to large value diagonal
ebosJacIgnoreOverlap[lcell][lcell] = diag_block;
//loop over off diagonal blocks in overlap row
for (auto col = row->second.begin(); col != row->second.end(); ++col)
{
int ncell = *col;
//zero out block
ebosJacIgnoreOverlap[lcell][ncell] = 0.0;
}
}
}
const Simulator& simulator_;
mutable int iterations_;
2018-11-12 04:03:54 -06:00
mutable bool converged_;
boost::any parallelInformation_;
bool isIORank_;
2018-11-12 04:03:54 -06:00
const Matrix *matrix_;
Vector *rhs_;
std::unique_ptr<Matrix> matrix_for_preconditioner_;
2018-11-12 04:03:54 -06:00
std::vector<std::pair<int,std::vector<int>>> overlapRowAndColumns_;
FlowLinearSolverParameters parameters_;
}; // end ISTLSolver
} // namespace Opm
#endif