opm-simulators/opm/polymer/GravityColumnSolverPolymer_impl.hpp

261 lines
9.8 KiB
C++
Raw Normal View History

2012-03-15 12:09:29 -05:00
/*
Copyright 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
/*
Copyright 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <opm/polymer/GravityColumnSolverPolymer.hpp>
#include <opm/core/linalg/blas_lapack.h>
#include <opm/core/utility/ErrorMacros.hpp>
namespace Opm
{
template <class Model>
GravityColumnSolverPolymer<Model>::GravityColumnSolverPolymer(Model& model,
const UnstructuredGrid& grid,
const double tol,
const int maxit)
: model_(model), grid_(grid), tol_(tol), maxit_(maxit)
{
}
namespace {
struct ZeroVec
{
double operator[](int) const { return 0.0; }
};
struct StateWithZeroFlux
{
StateWithZeroFlux(std::vector<double>& s, std::vector<double>& c, std::vector<double>& cmax_arg) : sat(s), cpoly(c), cmax(cmax_arg) {}
2012-03-15 12:09:29 -05:00
const ZeroVec& faceflux() const { return zv; }
const std::vector<double>& saturation() const { return sat; }
std::vector<double>& saturation() { return sat; }
const std::vector<double>& concentration() const { return cpoly; }
std::vector<double>& concentration() { return cpoly; }
const std::vector<double>& maxconcentration() const { return cmax; }
std::vector<double>& maxconcentration() { return cmax; }
2012-03-15 12:09:29 -05:00
ZeroVec zv;
std::vector<double>& sat;
std::vector<double>& cpoly;
std::vector<double>& cmax;
2012-03-15 12:09:29 -05:00
};
2012-03-15 12:09:29 -05:00
struct Vecs
{
Vecs(int sz) : sol(sz, 0.0) {}
const std::vector<double>& solution() const { return sol; }
std::vector<double>& writableSolution() { return sol; }
std::vector<double> sol;
};
struct JacSys
{
JacSys(int sz) : v(sz) {}
const Vecs& vector() const { return v; }
Vecs& vector() { return v; }
Vecs v;
typedef std::vector<double> vector_type;
};
struct BandMatrixCoeff
2012-03-15 12:09:29 -05:00
{
BandMatrixCoeff(int N, int ku, int kl) : N_(N), ku_(ku), kl_(kl), nrow_(2*kl + ku + 1) {
}
2012-03-15 12:09:29 -05:00
// compute the position where to store the coefficient of a matrix A_{i,j} (i,j=0,...,N-1)
// in a array which is sent to the band matrix solver of LAPACK.
2012-03-19 10:33:32 -05:00
int operator ()(int i, int j) const {
2012-03-19 03:56:20 -05:00
return kl_ + ku_ + i - j + j*nrow_;
}
2012-03-15 12:09:29 -05:00
2012-03-19 10:33:32 -05:00
const int N_;
2012-03-15 12:09:29 -05:00
const int ku_;
const int kl_;
const int nrow_;
2012-03-19 10:33:32 -05:00
};
2012-03-15 12:09:29 -05:00
} // anon namespace
/// \param[in] columns for each column (with logical cartesian indices as key),
/// contains the cells on which to solve the segregation
/// problem. For each column, its cells must be in a single
/// vertical column, and ordered
/// (direction doesn't matter).
template <class Model>
void GravityColumnSolverPolymer<Model>::solve(const std::pair<std::vector<int>, std::vector<std::vector<int> > >& columns,
2012-03-15 12:09:29 -05:00
const double dt,
std::vector<double>& s,
std::vector<double>& c,
std::vector<double>& cmax
2012-03-15 12:09:29 -05:00
)
{
// Initialize model. These things are done for the whole grid!
StateWithZeroFlux state(s, c, cmax); // This holds s, c and cmax by reference.
2012-03-15 12:09:29 -05:00
JacSys sys(2*grid_.number_of_cells);
std::vector<double> increment(2*grid_.number_of_cells, 0.0);
model_.initStep(state, grid_, sys);
int iter = 0;
double max_delta = 1e100;
while (iter < maxit_) {
model_.initIteration(state, grid_, sys);
int size = columns.second.size();
for(int i = 0; i < size; ++i) {
solveSingleColumn(columns.second[i], dt, s, c, cmax, increment);
2012-03-15 12:09:29 -05:00
}
for (int cell = 0; cell < grid_.number_of_cells; ++cell) {
sys.vector().writableSolution()[2*cell + 0] += increment[2*cell + 0];
sys.vector().writableSolution()[2*cell + 1] += increment[2*cell + 1];
}
const double maxelem = *std::max_element(increment.begin(), increment.end());
const double minelem = *std::min_element(increment.begin(), increment.end());
max_delta = std::max(maxelem, -minelem);
std::cout << "Iteration " << iter << " max_delta = " << max_delta << std::endl;
if (max_delta < tol_) {
break;
}
++iter;
}
if (max_delta >= tol_) {
THROW("Failed to converge!");
}
// Finalize.
// model_.finishIteration(); //
2012-03-15 12:09:29 -05:00
// finishStep() writes to state, which holds s by reference.
// This will update the entire grid's state... cmax is updated here.
2012-03-15 12:09:29 -05:00
model_.finishStep(grid_, sys.vector().solution(), state);
}
2012-03-19 10:33:32 -05:00
2012-03-15 12:09:29 -05:00
/// \param[in] column_cells the cells on which to solve the segregation
/// problem. Must be in a single vertical column,
/// and ordered (direction doesn't matter).
template <class Model>
2012-03-19 10:33:32 -05:00
void GravityColumnSolverPolymer<Model>::solveSingleColumn(const std::vector<int>& column_cells,
const double dt,
std::vector<double>& s,
std::vector<double>& c,
std::vector<double>& cmax,
2012-03-19 10:33:32 -05:00
std::vector<double>& sol_vec)
2012-03-15 12:09:29 -05:00
{
// This is written only to work with SinglePointUpwindTwoPhase,
// not with arbitrary problem models.
int col_size = column_cells.size();
StateWithZeroFlux state(s, c, cmax); // This holds s by reference.
2012-03-15 12:09:29 -05:00
// Assemble.
const int kl = 3;
const int ku = 3;
const int nrow = 2*kl + ku + 1;
const int N = 2*col_size; // N unknowns: s and c for each cell.
std::vector<double> hm(nrow*N, 0.0); // band matrix with 3 upper and 3 lower diagonals.
std::vector<double> rhs(N, 0.0);
const BandMatrixCoeff bmc(N, ku, kl);
2012-03-15 12:09:29 -05:00
for (int ci = 0; ci < col_size; ++ci) {
std::vector<double> F(2, 0.);
2012-03-15 12:09:29 -05:00
std::vector<double> dFd1(4, 0.);
std::vector<double> dFd2(4, 0.);
std::vector<double> dF(4, 0.);
const int cell = column_cells[ci];
const int prev_cell = (ci == 0) ? -999 : column_cells[ci - 1];
const int next_cell = (ci == col_size - 1) ? -999 : column_cells[ci + 1];
// model_.initResidual(cell, F);
for (int j = grid_.cell_facepos[cell]; j < grid_.cell_facepos[cell+1]; ++j) {
const int face = grid_.cell_faces[j];
const int c1 = grid_.face_cells[2*face + 0];
const int c2 = grid_.face_cells[2*face + 1];
if (c1 == prev_cell || c2 == prev_cell || c1 == next_cell || c2 == next_cell) {
F.assign(2, 0.);
2012-03-15 12:09:29 -05:00
dFd1.assign(4, 0.);
dFd2.assign(4, 0.);
model_.fluxConnection(state, grid_, dt, cell, face, &F[0], &dFd1[0], &dFd2[0]);
if (c1 == prev_cell || c2 == prev_cell) {
2012-03-19 03:56:20 -05:00
hm[bmc(2*ci + 0, 2*(ci - 1) + 0)] += dFd2[0];
hm[bmc(2*ci + 0, 2*(ci - 1) + 1)] += dFd2[1];
hm[bmc(2*ci + 1, 2*(ci - 1) + 0)] += dFd2[2];
2012-03-19 03:56:20 -05:00
hm[bmc(2*ci + 1, 2*(ci - 1) + 1)] += dFd2[3];
2012-03-15 12:09:29 -05:00
} else {
ASSERT(c1 == next_cell || c2 == next_cell);
2012-03-19 03:56:20 -05:00
hm[bmc(2*ci + 0, 2*(ci + 1) + 0)] += dFd2[0];
hm[bmc(2*ci + 0, 2*(ci + 1) + 1)] += dFd2[1];
hm[bmc(2*ci + 1, 2*(ci + 1) + 0)] += dFd2[2];
2012-03-19 03:56:20 -05:00
hm[bmc(2*ci + 1, 2*(ci + 1) + 1)] += dFd2[3];
2012-03-15 12:09:29 -05:00
}
2012-03-19 03:56:20 -05:00
hm[bmc(2*ci + 0, 2*ci + 0)] += dFd1[0];
hm[bmc(2*ci + 0, 2*ci + 1)] += dFd1[1];
hm[bmc(2*ci + 1, 2*ci + 0)] += dFd1[2];
hm[bmc(2*ci + 1, 2*ci + 1)] += dFd1[3];
2012-03-15 12:09:29 -05:00
rhs[2*ci + 0] += F[0];
rhs[2*ci + 1] += F[1];
}
}
F.assign(2, 0.);
dF.assign(4, 0.);
model_.accumulation(grid_, cell, &F[0], &dF[0]);
2012-03-19 03:56:20 -05:00
hm[bmc(2*ci + 0, 2*ci + 0)] += dF[0];
hm[bmc(2*ci + 0, 2*ci + 1)] += dF[1];
hm[bmc(2*ci + 1, 2*ci + 0)] += dF[2];
hm[bmc(2*ci + 1, 2*ci + 1)] += dF[3];
2012-03-15 12:09:29 -05:00
rhs[2*ci + 0] += F[0];
2012-03-15 12:09:29 -05:00
rhs[2*ci + 1] += F[1];
}
// model_.sourceTerms(); // Not needed
2012-03-15 12:09:29 -05:00
// Solve.
const int num_rhs = 1;
int info = 0;
std::vector<int> ipiv(N, 0);
2012-03-15 12:09:29 -05:00
// Solution will be written to rhs.
dgbsv_(&N, &kl, &ku, &num_rhs, &hm[0], &nrow, &ipiv[0], &rhs[0], &N, &info);
2012-03-15 12:09:29 -05:00
if (info != 0) {
THROW("Lapack reported error in dgtsv: " << info);
}
for (int ci = 0; ci < col_size; ++ci) {
sol_vec[2*column_cells[ci] + 0] = -rhs[2*ci + 0];
sol_vec[2*column_cells[ci] + 1] = -rhs[2*ci + 1];
}
}
} // namespace Opm