opm-simulators/opm/simulators/linalg/bda/amgclSolverBackend.cpp

419 lines
15 KiB
C++
Raw Normal View History

2021-06-02 09:19:00 -05:00
/*
Copyright 2020 Equinor ASA
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <opm/simulators/linalg/bda/amgclSolverBackend.hpp>
#include <opm/simulators/linalg/bda/BdaResult.hpp>
2021-06-02 09:19:00 -05:00
#include <opm/common/OpmLog/OpmLog.hpp>
#include <opm/common/ErrorMacros.hpp>
#include <dune/common/timer.hh>
#include <boost/property_tree/json_parser.hpp>
2021-07-06 10:10:17 -05:00
#if HAVE_VEXCL
#include <amgcl/backend/vexcl.hpp>
#include <amgcl/backend/vexcl_static_matrix.hpp>
#endif
#include <algorithm>
#include <fstream>
#include <ios>
#include <ostream>
#include <memory>
#include <mutex>
#include <sstream>
#include <stdexcept>
#include <string>
#include <tuple>
#include <vector>
namespace Opm
{
namespace Accelerator
2021-06-02 09:19:00 -05:00
{
using Opm::OpmLog;
using Dune::Timer;
template <unsigned int block_size>
amgclSolverBackend<block_size>::amgclSolverBackend(const int verbosity_,
const int maxit_,
const double tolerance_,
const unsigned int platformID_,
const unsigned int deviceID_)
: BdaSolver<block_size>(verbosity_, maxit_, tolerance_, platformID_, deviceID_)
{}
2021-06-02 09:19:00 -05:00
template <unsigned int block_size>
amgclSolverBackend<block_size>::~amgclSolverBackend() {}
template <unsigned int block_size>
2022-02-07 06:39:38 -06:00
void amgclSolverBackend<block_size>::initialize(int Nb_, int nnzbs) {
this->Nb = Nb_;
this->N = Nb * block_size;
this->nnzb = nnzbs;
this->nnz = nnzbs * block_size * block_size;
2021-06-02 09:19:00 -05:00
std::ostringstream out;
2022-02-07 06:39:38 -06:00
out << "Initializing amgclSolverBackend, matrix size: " << Nb << " blockrows, nnzb: " << nnzb << " blocks\n";
2021-06-02 09:19:00 -05:00
out << "Maxit: " << maxit << std::scientific << ", tolerance: " << tolerance << "\n";
2021-06-08 05:11:42 -05:00
out << "DeviceID: " << deviceID << "\n";
2021-06-02 09:19:00 -05:00
OpmLog::info(out.str());
out.str("");
out.clear();
A_vals.resize(nnz);
A_cols.resize(nnz);
A_rows.resize(N + 1);
rhs.resize(N);
x.resize(N);
// try to read amgcl parameters via json file
std::string filename = "amgcl_options.json";
std::ifstream file(filename);
2021-07-02 09:21:19 -05:00
std::string backend_type_string;
if (file.is_open()) { // if file exists, read parameters from file
try {
boost::property_tree::read_json(file, prm);
} catch (boost::property_tree::json_parser::json_parser_error& e) {
OPM_THROW(std::logic_error, "Error cannot parse json file '" + filename + "'");
}
// the prm.get reads data from the file, with default values if not specified
// the prm.put puts the data in the property_tree, so it gets printed
backend_type_string = prm.get("backend_type", "cpu");
prm.put("backend_type", backend_type_string);
std::string t1 = prm.get("precond.class", "relaxation");
prm.put("precond.class", t1);
t1 = prm.get("precond.type", "ilu0");
prm.put("precond.type", t1);
double t2 = prm.get("precond.damping", 0.9);
prm.put("precond.damping", t2);
t1 = prm.get("solver.type", "bicgstab");
prm.put("solver.type", t1);
t2 = prm.get("solver.tol", tolerance);
prm.put("solver.tol", t2);
int t3 = prm.get("solver.maxiter", maxit);
prm.put("solver.maxiter", t3);
bool t4 = prm.get("solver.verbose", verbosity >= 2);
prm.put("solver.verbose", t4);
out << "Using parameters from " << filename << " (with default values for omitted parameters):\n";
} else { // otherwise use default parameters, same as Dune
2021-07-06 10:10:17 -05:00
prm.put("backend_type", "cpu"); // put it in the tree so it gets printed
prm.put("precond.class", "relaxation");
prm.put("precond.type", "ilu0");
prm.put("precond.damping", 0.9);
prm.put("solver.type", "bicgstab");
prm.put("solver.tol", tolerance);
prm.put("solver.maxiter", maxit);
prm.put("solver.verbose", verbosity >= 2);
2021-07-06 10:10:17 -05:00
backend_type_string = prm.get("backend_type", "cpu");
out << "Using default amgcl parameters:\n";
}
2021-06-08 04:37:16 -05:00
boost::property_tree::write_json(out, prm); // print amgcl parameters
2021-07-02 09:21:19 -05:00
prm.erase("backend_type"); // delete custom parameter, otherwise amgcl prints a warning
if (backend_type_string == "cpu") {
backend_type = Amgcl_backend_type::cpu;
} else if (backend_type_string == "cuda") {
backend_type = Amgcl_backend_type::cuda;
} else if (backend_type_string == "vexcl") {
backend_type = Amgcl_backend_type::vexcl;
} else {
2021-07-06 10:10:17 -05:00
OPM_THROW(std::logic_error, "Error unknown value for amgcl parameter 'backend_type', use [cpu|cuda|vexcl]");
2021-07-02 09:21:19 -05:00
}
2021-07-02 09:21:19 -05:00
if (backend_type == Amgcl_backend_type::cuda) {
2021-07-06 10:10:17 -05:00
#if !HAVE_CUDA
2021-06-30 08:58:34 -05:00
OPM_THROW(std::logic_error, "Error amgcl is trying to use CUDA, but CUDA was not found by CMake");
#endif
}
if (backend_type == Amgcl_backend_type::vexcl) {
#if !HAVE_VEXCL
OPM_THROW(std::logic_error, "Error amgcl is trying to use VexCL, but VexCL was not found by CMake");
2021-06-30 08:58:34 -05:00
#endif
}
OpmLog::info(out.str());
2021-06-08 05:11:42 -05:00
2021-06-02 09:19:00 -05:00
initialized = true;
} // end initialize()
template <unsigned int block_size>
void amgclSolverBackend<block_size>::convert_sparsity_pattern(int *rows, int *cols) {
Timer t;
const unsigned int bs = block_size;
int idx = 0; // indicates the unblocked write index
A_rows[0] = 0;
for (int row = 0; row < Nb; ++row) {
int rowStart = rows[row];
int rowEnd = rows[row+1];
for (unsigned r = 0; r < bs; ++r) {
for (int ij = rowStart; ij < rowEnd; ++ij) {
for (unsigned c = 0; c < bs; ++c) {
A_cols[idx] = cols[ij] * bs + c;
idx++;
}
}
A_rows[row*bs + r + 1] = idx;
}
}
if (verbosity >= 3) {
std::ostringstream out;
out << "amgclSolverBackend::convert_sparsity_pattern(): " << t.stop() << " s";
OpmLog::info(out.str());
}
} // end convert_sparsity_pattern()
2021-06-08 05:11:42 -05:00
2021-06-02 09:19:00 -05:00
template <unsigned int block_size>
void amgclSolverBackend<block_size>::convert_data(double *vals, int *rows) {
Timer t;
const unsigned int bs = block_size;
int idx = 0; // indicates the unblocked write index
for (int row = 0; row < Nb; ++row) {
int rowStart = rows[row];
int rowEnd = rows[row+1];
for (unsigned r = 0; r < bs; ++r) {
for (int ij = rowStart; ij < rowEnd; ++ij) {
for (unsigned c = 0; c < bs; ++c) {
A_vals[idx] = vals[ij*bs*bs + r*bs + c];
idx++;
}
}
}
}
if (verbosity >= 3) {
std::ostringstream out;
out << "amgclSolverBackend::convert_data(): " << t.stop() << " s";
OpmLog::info(out.str());
}
} // end convert_data()
#if HAVE_VEXCL
void initialize_vexcl(std::vector<cl::CommandQueue>& ctx, unsigned int platformID, unsigned int deviceID) {
std::vector<cl::Platform> platforms;
std::vector<cl::Device> devices;
cl::Platform::get(&platforms);
if (platforms.size() <= platformID) {
OPM_THROW(std::logic_error, "Error chosen too high OpenCL platform ID");
}
std::string platform_name, device_name;
platforms[platformID].getInfo(CL_PLATFORM_NAME, &platform_name);
platforms[platformID].getDevices(CL_DEVICE_TYPE_ALL, &devices);
if (devices.size() <= deviceID){
OPM_THROW(std::logic_error, "Error chosen too high OpenCL device ID");
}
devices[deviceID].getInfo(CL_DEVICE_NAME, &device_name);
cl::Context c(devices[deviceID]);
cl::CommandQueue q(c, devices[deviceID]);
ctx.push_back(q);
std::ostringstream out;
out << "Using VexCL on " << device_name << " (" << platform_name << ")\n";
OpmLog::info(out.str());
}
template <typename vexcl_matrix_type, typename vexcl_vector_type, unsigned int block_size, typename AIJInfo>
void solve_vexcl(
const AIJInfo& A,
const boost::property_tree::ptree prm,
const std::vector<cl::CommandQueue>& ctx,
double *b,
std::vector<double>& x,
const int N,
int& iters,
double& error)
{
typedef amgcl::backend::vexcl<vexcl_matrix_type> Backend;
typedef amgcl::make_solver<amgcl::runtime::preconditioner<Backend>, amgcl::runtime::solver::wrapper<Backend> > Solver;
typename Solver::backend_params bprm;
bprm.q = ctx; // set vexcl context
Solver solve(A, prm, bprm); // create solver
auto b_ptr = reinterpret_cast<vexcl_vector_type*>(b);
auto x_ptr = reinterpret_cast<vexcl_vector_type*>(x.data());
vex::vector<vexcl_vector_type> B(ctx, N / block_size, b_ptr);
vex::vector<vexcl_vector_type> X(ctx, N / block_size, x_ptr);
std::tie(iters, error) = solve(B, X); // actually perform solve
vex::copy(X, x_ptr);
}
#endif
2021-06-02 09:19:00 -05:00
template <unsigned int block_size>
2021-07-05 09:38:54 -05:00
void amgclSolverBackend<block_size>::solve_system(double *b, BdaResult &res) {
2021-06-02 09:19:00 -05:00
Timer t;
try {
2021-07-02 09:21:19 -05:00
if (backend_type == Amgcl_backend_type::cuda) { // use CUDA
2021-06-30 08:58:34 -05:00
#if HAVE_CUDA
2021-07-06 10:10:17 -05:00
solve_cuda(b);
2021-06-30 08:58:34 -05:00
#endif
2021-07-02 09:21:19 -05:00
} else if (backend_type == Amgcl_backend_type::cpu) { // use builtin backend (CPU)
// create matrix object
auto Atmp = std::tie(N, A_rows, A_cols, A_vals);
auto A = amgcl::adapter::block_matrix<dmat_type>(Atmp);
// create solver and construct preconditioner
// don't reuse this unless the preconditioner can be reused
CPU_Solver solve(A, prm);
// print solver structure (once)
std::call_once(print_info, [&](){
std::ostringstream out;
out << solve << std::endl;
OpmLog::info(out.str());
});
// reset x vector
std::fill(x.begin(), x.end(), 0.0);
// create blocked vectors
auto b_ptr = reinterpret_cast<dvec_type*>(b);
auto x_ptr = reinterpret_cast<dvec_type*>(x.data());
auto B = amgcl::make_iterator_range(b_ptr, b_ptr + N / block_size);
auto X = amgcl::make_iterator_range(x_ptr, x_ptr + N / block_size);
// actually solve
std::tie(iters, error) = solve(B, X);
2021-07-02 09:21:19 -05:00
} else if (backend_type == Amgcl_backend_type::vexcl) {
#if HAVE_VEXCL
static std::vector<cl::CommandQueue> ctx; // using CommandQueue directly instead of vex::Context
2021-07-09 08:39:35 -05:00
std::call_once(vexcl_initialize, [&](){
initialize_vexcl(ctx, platformID, deviceID);
2021-07-09 08:39:35 -05:00
});
if constexpr(block_size == 1){
auto A = std::tie(N, A_rows, A_cols, A_vals);
2021-07-02 09:21:19 -05:00
solve_vexcl<double, double, block_size>(A, prm, ctx, b, x, N, iters, error);
} else {
// allow vexcl to use blocked matrices
vex::scoped_program_header h1(ctx, amgcl::backend::vexcl_static_matrix_declaration<double, block_size>());
2021-07-02 09:21:19 -05:00
2021-07-05 03:42:25 -05:00
auto Atmp = std::tie(N, A_rows, A_cols, A_vals);
auto A = amgcl::adapter::block_matrix<dmat_type>(Atmp);
2021-07-02 09:21:19 -05:00
solve_vexcl<dmat_type, dvec_type, block_size>(A, prm, ctx, b, x, N, iters, error);
}
#endif
}
2021-06-02 09:19:00 -05:00
} catch (const std::exception& ex) {
std::cerr << "Caught exception: " << ex.what() << std::endl;
throw ex;
}
double time_elapsed = t.stop();
res.iterations = iters;
res.reduction = 0.0;
res.elapsed = time_elapsed;
res.converged = (iters != maxit);
if (verbosity >= 1) {
std::ostringstream out;
out << "=== converged: " << res.converged << ", time: " << res.elapsed << \
", time per iteration: " << res.elapsed / iters << ", iterations: " << iters;
OpmLog::info(out.str());
}
if (verbosity >= 3) {
std::ostringstream out;
out << "amgclSolverBackend::solve_system(): " << time_elapsed << " s";
OpmLog::info(out.str());
}
} // end solve_system()
// copy result to host memory
// caller must be sure that x is a valid array
template <unsigned int block_size>
void amgclSolverBackend<block_size>::get_result(double *x_) {
Timer t;
std::copy(x.begin(), x.end(), x_);
if (verbosity >= 3) {
std::ostringstream out;
out << "amgclSolverBackend::get_result(): " << t.stop() << " s";
OpmLog::info(out.str());
}
} // end get_result()
template <unsigned int block_size>
2022-02-23 09:28:37 -06:00
SolverStatus amgclSolverBackend<block_size>::solve_system(std::shared_ptr<BlockedMatrix> matrix,
double *b,
[[maybe_unused]] std::shared_ptr<BlockedMatrix> jacMatrix,
[[maybe_unused]] WellContributions& wellContribs,
BdaResult &res)
{
2021-06-02 09:19:00 -05:00
if (initialized == false) {
2022-02-07 06:39:38 -06:00
initialize(matrix->Nb, matrix->nnzbs);
convert_sparsity_pattern(matrix->rowPointers, matrix->colIndices);
2021-06-02 09:19:00 -05:00
}
2022-02-07 06:39:38 -06:00
convert_data(matrix->nnzValues, matrix->rowPointers);
2021-07-05 09:38:54 -05:00
solve_system(b, res);
2021-06-02 09:19:00 -05:00
return SolverStatus::BDA_SOLVER_SUCCESS;
}
template <>
SolverStatus amgclSolverBackend<1>::solve_system([[maybe_unused]] std::shared_ptr<BlockedMatrix> matrix,
[[maybe_unused]] double *b,
[[maybe_unused]] std::shared_ptr<BlockedMatrix> jacMatrix,
[[maybe_unused]] WellContributions& wellContribs,
[[maybe_unused]] BdaResult &res)
{
OPM_THROW(std::logic_error, "amgclSolverBackend not implemented for sz 1");
}
2021-06-02 09:19:00 -05:00
#define INSTANTIATE_BDA_FUNCTIONS(n) \
template amgclSolverBackend<n>::amgclSolverBackend(int, int, double, unsigned int, unsigned int); \
INSTANTIATE_BDA_FUNCTIONS(1);
INSTANTIATE_BDA_FUNCTIONS(2);
INSTANTIATE_BDA_FUNCTIONS(3);
INSTANTIATE_BDA_FUNCTIONS(4);
INSTANTIATE_BDA_FUNCTIONS(5);
INSTANTIATE_BDA_FUNCTIONS(6);
2021-06-02 09:19:00 -05:00
#undef INSTANTIATE_BDA_FUNCTIONS
} // namespace Accelerator
} // namespace Opm