opm-simulators/opm/core/simulator/initStateEquil.hpp

917 lines
36 KiB
C++
Raw Normal View History

/*
Copyright 2014 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_INITSTATEEQUIL_HEADER_INCLUDED
#define OPM_INITSTATEEQUIL_HEADER_INCLUDED
#include <opm/core/io/eclipse/EclipseGridParser.hpp>
#include <opm/core/props/BlackoilPropertiesInterface.hpp>
#include <opm/core/props/BlackoilPhases.hpp>
#include <opm/core/utility/linearInterpolation.hpp>
#include <opm/core/utility/RegionMapping.hpp>
#include <opm/core/utility/RootFinders.hpp>
#include <opm/core/utility/Units.hpp>
#include <array>
#include <cassert>
#include <utility>
#include <vector>
/**
* \file
* Facilities for an ECLIPSE-style equilibration-based
* initialisation scheme (keyword 'EQUIL').
*/
struct UnstructuredGrid;
namespace Opm
{
/**
* Types and routines that collectively implement a basic
* ECLIPSE-style equilibration-based initialisation scheme.
*
* This namespace is intentionally nested to avoid name clashes
* with other parts of OPM.
*/
namespace equil {
template <class Props>
class DensityCalculator;
/**
* Facility for calculating phase densities based on the
* BlackoilPropertiesInterface.
*
* Implements the crucial <CODE>operator()(p,svol)</CODE>
* function that is expected by class EquilReg.
*/
template <>
class DensityCalculator< BlackoilPropertiesInterface > {
public:
/**
* Constructor.
*
* \param[in] props Implementation of the
* BlackoilPropertiesInterface.
*
* \param[in] c Single cell used as a representative cell
* in a PVT region.
*/
DensityCalculator(const BlackoilPropertiesInterface& props,
const int c)
: props_(props)
, c_(1, c)
{
}
/**
* Compute phase densities of all phases at phase point
* given by (pressure, surface volume) tuple.
*
* \param[in] p Fluid pressure.
*
* \param[in] z Surface volumes of all phases.
*
* \return Phase densities at phase point.
*/
std::vector<double>
operator()(const double p,
const std::vector<double>& z) const
{
const int np = props_.numPhases();
std::vector<double> A(np * np, 0);
assert (z.size() == std::vector<double>::size_type(np));
double* dAdp = 0;
props_.matrix(1, &p, &z[0], &c_[0], &A[0], dAdp);
std::vector<double> rho(np, 0.0);
props_.density(1, &A[0], &rho[0]);
return rho;
}
private:
const BlackoilPropertiesInterface& props_;
const std::vector<int> c_;
};
/**
* Types and routines relating to phase mixing in
* equilibration calculations.
*/
namespace miscibility {
/**
* Type that implements "no phase mixing" policy.
*/
struct NoMixing {
/**
* Function call.
*
* \param[in] depth Depth at which to calculate RS
* value.
*
* \param[in] press Pressure at which to calculate RS
* value.
*
* \return Dissolved gas-oil ratio (RS) at depth @c
* depth and pressure @c press. In "no mixing
* policy", this is identically zero.
*/
double
operator()(const double /* depth */,
const double /* press */) const
{
return 0.0;
}
};
/**
* Type that implements "dissolved gas-oil ratio"
* tabulated as a function of depth policy. Data
* typically taken from keyword 'RSVD'.
*/
class RsVD {
public:
/**
* Constructor.
*
* \param[in] depth Depth nodes.
* \param[in] rs Dissolved gas-oil ratio at @c depth.
*/
RsVD(const std::vector<double>& depth,
const std::vector<double>& rs)
: depth_(depth)
, rs_(rs)
{
}
/**
* Function call.
*
* \param[in] depth Depth at which to calculate RS
* value.
*
* \param[in] press Pressure at which to calculate RS
* value.
*
* \return Dissolved gas-oil ratio (RS) at depth @c
* depth and pressure @c press.
*/
double
operator()(const double depth,
const double /* press */) const
{
return linearInterpolation(depth_, rs_, depth);
}
private:
std::vector<double> depth_; /**< Depth nodes */
std::vector<double> rs_; /**< Dissolved gas-oil ratio */
};
/**
* Class that implements "dissolved gas-oil ratio" (Rs)
* as function of depth and pressure as follows:
*
* 1. The Rs at the gas-oil contact is equal to the
* saturated Rs value, Rs_sat_contact.
*
* 2. The Rs elsewhere is equal to Rs_sat_contact, but
* constrained to the saturated value as given by the
* local pressure.
*
* This should yield Rs-values that are constant below the
* contact, and decreasing above the contact.
*/
class RsSatAtContact {
public:
/**
* Constructor.
*
* \param[in] props property object
* \param[in] cell any cell in the pvt region
* \param[in] p_contact oil pressure at the contact
*/
RsSatAtContact(const BlackoilPropertiesInterface& props, const int cell, const double p_contact)
: props_(props), cell_(cell)
{
auto pu = props_.phaseUsage();
std::fill(z_, z_ + BlackoilPhases::MaxNumPhases, 0.0);
z_[pu.phase_pos[BlackoilPhases::Vapour]] = 1e100;
z_[pu.phase_pos[BlackoilPhases::Liquid]] = 1.0;
rs_sat_contact_ = satRs(p_contact);
}
/**
* Function call.
*
* \param[in] depth Depth at which to calculate RS
* value.
*
* \param[in] press Pressure at which to calculate RS
* value.
*
* \return Dissolved gas-oil ratio (RS) at depth @c
* depth and pressure @c press.
*/
double
operator()(const double /* depth */,
const double press) const
{
return std::max(satRs(press), rs_sat_contact_);
}
private:
const BlackoilPropertiesInterface& props_;
const int cell_;
double z_[BlackoilPhases::MaxNumPhases];
double rs_sat_contact_;
mutable double A_[BlackoilPhases::MaxNumPhases * BlackoilPhases::MaxNumPhases];
double satRs(const double press) const
{
props_.matrix(1, &press, z_, &cell_, A_, 0);
// Rs/Bo is in the gas row and oil column of A_.
// 1/Bo is in the oil row and column.
// Recall also that it is stored in column-major order.
const int opos = props_.phaseUsage().phase_pos[BlackoilPhases::Liquid];
const int gpos = props_.phaseUsage().phase_pos[BlackoilPhases::Vapour];
const int np = props_.numPhases();
return A_[np*opos + gpos] / A_[np*opos + opos];
}
};
} // namespace miscibility
/**
* Equilibration record.
*
* Layout and contents inspired by first six items of
* ECLIPSE's 'EQUIL' records. This is the minimum amount of
* input data needed to define phase pressures in an
* equilibration region.
*
* Data consists of three pairs of depth and pressure values:
* 1. main
* - @c depth Main datum depth.
* - @c press Pressure at datum depth.
*
* 2. woc
* - @c depth Depth of water-oil contact
* - @c press water-oil capillary pressure at water-oil contact.
* Capillary pressure defined as "P_oil - P_water".
*
* 3. goc
* - @c depth Depth of gas-oil contact
* - @c press Gas-oil capillary pressure at gas-oil contact.
* Capillary pressure defined as "P_gas - P_oil".
*/
struct EquilRecord {
struct {
double depth;
double press;
} main, woc, goc;
};
/**
* Aggregate information base of an equilibration region.
*
* Provides inquiry methods for retrieving depths of contacs
* and pressure values as well as a means of calculating fluid
* densities, dissolved gas-oil ratio and vapourised oil-gas
* ratios.
*
* \tparam DensCalc Type that provides access to a phase
* density calculation facility. Must implement an operator()
* declared as
* <CODE>
* std::vector<double>
* operator()(const double press,
* const std::vector<double>& svol )
* </CODE>
* that calculates the phase densities of all phases in @c
* svol at fluid pressure @c press.
*
* \tparam RS Type that provides access to a calculator for
* (initial) dissolved gas-oil ratios as a function of depth
* and (oil) pressure. Must implement an operator() declared
* as
* <CODE>
* double
* operator()(const double depth,
* const double press)
* </CODE>
* that calculates the dissolved gas-oil ratio at depth @c
* depth and (oil) pressure @c press.
*
* \tparam RV Type that provides access to a calculator for
* (initial) vapourised oil-gas ratios as a function of depth
* and (gas) pressure. Must implement an operator() declared
* as
* <CODE>
* double
* operator()(const double depth,
* const double press)
* </CODE>
* that calculates the vapourised oil-gas ratio at depth @c
* depth and (gas) pressure @c press.
*/
template <class DensCalc,
class RS = miscibility::NoMixing,
class RV = miscibility::NoMixing>
class EquilReg {
public:
/**
* Constructor.
*
* \param[in] rec Equilibration data of current region.
* \param[in] density Density calculator of current region.
* \param[in] rs Calculator of dissolved gas-oil ratio.
* \param[in] rv Calculator of vapourised oil-gas ratio.
* \param[in] pu Summary of current active phases.
*/
EquilReg(const EquilRecord& rec,
const DensCalc& density,
const RS& rs,
const RV& rv,
const PhaseUsage& pu)
: rec_ (rec)
, density_(density)
, rs_ (rs)
, rv_ (rv)
, pu_ (pu)
{
}
/**
* Type of density calculator.
*/
typedef DensCalc CalcDensity;
/**
* Type of dissolved gas-oil ratio calculator.
*/
typedef RS CalcDissolution;
/**
* Type of vapourised oil-gas ratio calculator.
*/
typedef RV CalcEvaporation;
/**
* Datum depth in current region
*/
double datum() const { return this->rec_.main.depth; }
/**
* Pressure at datum depth in current region.
*/
double pressure() const { return this->rec_.main.press; }
/**
* Depth of water-oil contact.
*/
double zwoc() const { return this->rec_.woc .depth; }
/**
* water-oil capillary pressure at water-oil contact.
*
* \return P_o - P_w at WOC.
*/
double pcow_woc() const { return this->rec_.woc .press; }
/**
* Depth of gas-oil contact.
*/
double zgoc() const { return this->rec_.goc .depth; }
/**
* Gas-oil capillary pressure at gas-oil contact.
*
* \return P_g - P_o at GOC.
*/
double pcgo_goc() const { return this->rec_.goc .press; }
/**
* Retrieve phase density calculator of current region.
*/
const CalcDensity&
densityCalculator() const { return this->density_; }
/**
* Retrieve dissolved gas-oil ratio calculator of current
* region.
*/
const CalcDissolution&
dissolutionCalculator() const { return this->rs_; }
/**
* Retrieve vapourised oil-gas ratio calculator of current
* region.
*/
const CalcEvaporation&
evaporationCalculator() const { return this->rv_; }
/**
* Retrieve active fluid phase summary.
*/
const PhaseUsage&
phaseUsage() const { return this->pu_; }
private:
EquilRecord rec_; /**< Equilibration data */
DensCalc density_; /**< Density calculator */
RS rs_; /**< RS calculator */
RV rv_; /**< RV calculator */
PhaseUsage pu_; /**< Active phase summary */
};
/// Functor for inverting capillary pressure function.
/// Function represented is
/// f(s) = pc(s) - target_pc
struct PcEq
{
PcEq(const BlackoilPropertiesInterface& props,
const int phase,
const int cell,
const double target_pc)
: props_(props),
phase_(phase),
cell_(cell),
target_pc_(target_pc)
{
std::fill(s_, s_ + BlackoilPhases::MaxNumPhases, 0.0);
std::fill(pc_, pc_ + BlackoilPhases::MaxNumPhases, 0.0);
}
double operator()(double s) const
{
s_[phase_] = s;
props_.capPress(1, s_, &cell_, pc_, 0);
return pc_[phase_] - target_pc_;
}
private:
const BlackoilPropertiesInterface& props_;
const int phase_;
const int cell_;
const int target_pc_;
mutable double s_[BlackoilPhases::MaxNumPhases];
mutable double pc_[BlackoilPhases::MaxNumPhases];
};
/// Compute saturation of some phase corresponding to a given
/// capillary pressure.
inline double satFromPc(const BlackoilPropertiesInterface& props,
const int phase,
const int cell,
const double target_pc,
const bool increasing = false)
{
// Find minimum and maximum saturations.
double sminarr[BlackoilPhases::MaxNumPhases];
double smaxarr[BlackoilPhases::MaxNumPhases];
props.satRange(1, &cell, sminarr, smaxarr);
const double s0 = increasing ? smaxarr[phase] : sminarr[phase];
const double s1 = increasing ? sminarr[phase] : smaxarr[phase];
// Create the equation f(s) = pc(s) - target_pc
const PcEq f(props, phase, cell, target_pc);
const double f0 = f(s0);
const double f1 = f(s1);
if (f0 <= 0.0) {
return s0;
} else if (f1 > 0.0) {
return s1;
} else {
const int max_iter = 30;
const double tol = 1e-6;
int iter_used = -1;
typedef RegulaFalsi<ThrowOnError> ScalarSolver;
const double sol = ScalarSolver::solve(f, std::min(s0, s1), std::max(s0, s1), max_iter, tol, iter_used);
return sol;
}
}
/// Functor for inverting a sum of capillary pressure functions.
/// Function represented is
/// f(s) = pc1(s) + pc2(1 - s) - target_pc
struct PcEqSum
{
PcEqSum(const BlackoilPropertiesInterface& props,
const int phase1,
const int phase2,
const int cell,
const double target_pc)
: props_(props),
phase1_(phase1),
phase2_(phase2),
cell_(cell),
target_pc_(target_pc)
{
std::fill(s_, s_ + BlackoilPhases::MaxNumPhases, 0.0);
std::fill(pc_, pc_ + BlackoilPhases::MaxNumPhases, 0.0);
}
double operator()(double s) const
{
s_[phase1_] = s;
s_[phase2_] = 1.0 - s;
props_.capPress(1, s_, &cell_, pc_, 0);
return pc_[phase1_] + pc_[phase2_] - target_pc_;
}
private:
const BlackoilPropertiesInterface& props_;
const int phase1_;
const int phase2_;
const int cell_;
const int target_pc_;
mutable double s_[BlackoilPhases::MaxNumPhases];
mutable double pc_[BlackoilPhases::MaxNumPhases];
};
/// Compute saturation of some phase corresponding to a given
/// capillary pressure, where the capillary pressure function
/// is given as a sum of two other functions.
inline double satFromSumOfPcs(const BlackoilPropertiesInterface& props,
const int phase1,
const int phase2,
const int cell,
const double target_pc)
{
// Find minimum and maximum saturations.
double sminarr[BlackoilPhases::MaxNumPhases];
double smaxarr[BlackoilPhases::MaxNumPhases];
props.satRange(1, &cell, sminarr, smaxarr);
const double smin = sminarr[phase1];
const double smax = smaxarr[phase1];
// Create the equation f(s) = pc1(s) + pc2(1-s) - target_pc
const PcEqSum f(props, phase1, phase2, cell, target_pc);
const double f0 = f(smin);
const double f1 = f(smax);
if (f0 <= 0.0) {
return smin;
} else if (f1 > 0.0) {
return smax;
} else {
const int max_iter = 30;
const double tol = 1e-6;
int iter_used = -1;
typedef RegulaFalsi<ThrowOnError> ScalarSolver;
const double sol = ScalarSolver::solve(f, smin, smax, max_iter, tol, iter_used);
return sol;
}
}
/**
* Compute initial phase pressures by means of equilibration.
*
* This function uses the information contained in an
* equilibration record (i.e., depths and pressurs) as well as
* a density calculator and related data to vertically
* integrate the phase pressure ODE
* \f[
* \frac{\mathrm{d}p_{\alpha}}{\mathrm{d}z} =
* \rho_{\alpha}(z,p_{\alpha})\cdot g
* \f]
* in which \f$\rho_{\alpha}$ denotes the fluid density of
* fluid phase \f$\alpha\f$, \f$p_{\alpha}\f$ is the
* corresponding phase pressure, \f$z\f$ is the depth and
* \f$g\f$ is the acceleration due to gravity (assumed
* directed downwords, in the positive \f$z\f$ direction).
*
* \tparam Region Type of an equilibration region information
* base. Typically an instance of the EquilReg
* class template.
*
* \tparam CellRange Type of cell range that demarcates the
* cells pertaining to the current
2014-01-20 03:33:42 -06:00
* equilibration region. Must implement
* methods begin() and end() to bound the range
* as well as provide an inner type,
* const_iterator, to traverse the range.
*
* \param[in] G Grid.
* \param[in] reg Current equilibration region.
* \param[in] cells Range that spans the cells of the current
* equilibration region.
* \param[in] grav Acceleration of gravity.
*
* \return Phase pressures, one vector for each active phase,
* of pressure values in each cell in the current
* equilibration region.
*/
template <class Region, class CellRange>
std::vector< std::vector<double> >
phasePressures(const UnstructuredGrid& G,
const Region& reg,
const CellRange& cells,
const double grav = unit::gravity);
/**
* Compute initial phase saturations by means of equilibration.
*
* \tparam Region Type of an equilibration region information
* base. Typically an instance of the EquilReg
* class template.
*
* \tparam CellRange Type of cell range that demarcates the
* cells pertaining to the current
* equilibration region. Must implement
* methods begin() and end() to bound the range
* as well as provide an inner type,
* const_iterator, to traverse the range.
*
* \param[in] reg Current equilibration region.
* \param[in] cells Range that spans the cells of the current
* equilibration region.
* \param[in] props Property object, needed for capillary functions.
* \param[in] phase_pressures Phase pressures, one vector for each active phase,
* of pressure values in each cell in the current
* equilibration region.
* \return Phase saturations, one vector for each phase, each containing
* one saturation value per cell in the region.
*/
template <class Region, class CellRange>
std::vector< std::vector<double> >
phaseSaturations(const Region& reg,
const CellRange& cells,
const BlackoilPropertiesInterface& props,
const std::vector< std::vector<double> >& phase_pressures)
{
const double z0 = reg.datum();
const double zwoc = reg.zwoc ();
const double zgoc = reg.zgoc ();
if ((zgoc > z0) || (z0 > zwoc)) {
OPM_THROW(std::runtime_error, "Cannot initialise: the datum depth must be in the oil zone.");
}
if (!reg.phaseUsage().phase_used[BlackoilPhases::Liquid]) {
OPM_THROW(std::runtime_error, "Cannot initialise: not handling water-gas cases.");
}
std::vector< std::vector<double> > phase_saturations = phase_pressures; // Just to get the right size.
double smin[BlackoilPhases::MaxNumPhases] = { 0.0 };
double smax[BlackoilPhases::MaxNumPhases] = { 0.0 };
const bool water = reg.phaseUsage().phase_used[BlackoilPhases::Aqua];
const bool gas = reg.phaseUsage().phase_used[BlackoilPhases::Vapour];
const int oilpos = reg.phaseUsage().phase_pos[BlackoilPhases::Liquid];
const int waterpos = reg.phaseUsage().phase_pos[BlackoilPhases::Aqua];
const int gaspos = reg.phaseUsage().phase_pos[BlackoilPhases::Vapour];
std::vector<double>::size_type local_index = 0;
for (typename CellRange::const_iterator ci = cells.begin(); ci != cells.end(); ++ci, ++local_index) {
const int cell = *ci;
props.satRange(1, &cell, smin, smax);
// Find saturations from pressure differences by
// inverting capillary pressure functions.
double sw = 0.0;
if (water) {
const double pcov = phase_pressures[oilpos][local_index] - phase_pressures[waterpos][local_index];
sw = satFromPc(props, waterpos, cell, pcov);
phase_saturations[waterpos][local_index] = sw;
}
double sg = 0.0;
if (gas) {
// Note that pcog is defined to be (pg - po), not (po - pg).
const double pcog = phase_pressures[gaspos][local_index] - phase_pressures[oilpos][local_index];
const double increasing = true; // pcog(sg) expected to be increasing function
sg = satFromPc(props, gaspos, cell, pcog, increasing);
phase_saturations[gaspos][local_index] = sg;
}
if (gas && water && (sg + sw > 1.0)) {
// Overlapping gas-oil and oil-water transition
// zones can lead to unphysical saturations when
// treated as above. Must recalculate using gas-water
// capillary pressure.
const double pcgw = phase_pressures[gaspos][local_index] - phase_pressures[waterpos][local_index];
sw = satFromSumOfPcs(props, waterpos, gaspos, cell, pcgw);
sg = 1.0 - sw;
phase_saturations[waterpos][local_index] = sw;
phase_saturations[gaspos][local_index] = sg;
}
phase_saturations[oilpos][local_index] = 1.0 - sw - sg;
}
return phase_saturations;
}
namespace DeckDependent {
inline
std::vector<EquilRecord>
getEquil(const EclipseGridParser& deck)
{
if (deck.hasField("EQUIL")) {
const EQUIL& eql = deck.getEQUIL();
typedef std::vector<EquilLine>::size_type sz_t;
const sz_t nrec = eql.equil.size();
std::vector<EquilRecord> ret;
ret.reserve(nrec);
for (sz_t r = 0; r < nrec; ++r) {
const EquilLine& rec = eql.equil[r];
EquilRecord record =
{
{ rec.datum_depth_ ,
rec.datum_depth_pressure_ }
,
{ rec.water_oil_contact_depth_ ,
rec.oil_water_cap_pressure_ }
,
{ rec.gas_oil_contact_depth_ ,
rec.gas_oil_cap_pressure_ }
};
ret.push_back(record);
}
return ret;
}
else {
OPM_THROW(std::domain_error,
"Deck does not provide equilibration data.");
}
}
inline
std::vector<int>
equilnum(const EclipseGridParser& deck,
const UnstructuredGrid& G )
{
std::vector<int> eqlnum;
if (deck.hasField("EQLNUM")) {
eqlnum = deck.getIntegerValue("EQLNUM");
}
else {
// No explicit equilibration region.
// All cells in region zero.
eqlnum.assign(G.number_of_cells, 0);
}
return eqlnum;
}
template <class InputDeck>
class PhasePressureSaturationComputer;
template <>
class PhasePressureSaturationComputer<Opm::EclipseGridParser> {
public:
PhasePressureSaturationComputer(const BlackoilPropertiesInterface& props,
const EclipseGridParser& deck ,
const UnstructuredGrid& G ,
const double grav = unit::gravity)
: pp_(props.numPhases(),
std::vector<double>(G.number_of_cells)),
sat_(props.numPhases(),
std::vector<double>(G.number_of_cells))
{
const std::vector<EquilRecord> rec = getEquil(deck);
const RegionMapping<> eqlmap(equilnum(deck, G));
calcPressII(eqlmap, rec, props, G, grav);
calcSat(eqlmap, rec, props, G, grav);
}
typedef std::vector<double> PVal;
typedef std::vector<PVal> PPress;
const PPress& press() const { return pp_; }
const PPress& saturation() const { return sat_; }
private:
typedef DensityCalculator<BlackoilPropertiesInterface> RhoCalc;
typedef EquilReg<RhoCalc> EqReg;
PPress pp_;
PPress sat_;
template <class RMap>
void
calcPressII(const RMap& reg ,
const std::vector< EquilRecord >& rec ,
const Opm::BlackoilPropertiesInterface& props,
const UnstructuredGrid& G ,
const double grav)
{
typedef miscibility::NoMixing NoMix;
for (typename RMap::RegionId
r = 0, nr = reg.numRegions();
r < nr; ++r)
{
const typename RMap::CellRange cells = reg.cells(r);
const int repcell = *cells.begin();
const RhoCalc calc(props, repcell);
const EqReg eqreg(rec[r], calc, NoMix(), NoMix(),
props.phaseUsage());
const PPress& res = phasePressures(G, eqreg, cells, grav);
for (int p = 0, np = props.numPhases(); p < np; ++p) {
PVal& d = pp_[p];
PVal::const_iterator s = res[p].begin();
for (typename RMap::CellRange::const_iterator
c = cells.begin(),
e = cells.end();
c != e; ++c, ++s)
{
d[*c] = *s;
}
}
}
}
template <class RMap>
void
calcSat(const RMap& reg ,
const std::vector< EquilRecord >& rec ,
const Opm::BlackoilPropertiesInterface& props,
const UnstructuredGrid& G ,
const double grav)
{
typedef miscibility::NoMixing NoMix;
for (typename RMap::RegionId
r = 0, nr = reg.numRegions();
r < nr; ++r)
{
const typename RMap::CellRange cells = reg.cells(r);
const int repcell = *cells.begin();
const RhoCalc calc(props, repcell);
const EqReg eqreg(rec[r], calc, NoMix(), NoMix(),
props.phaseUsage());
const PPress press = phasePressures(G, eqreg, cells, grav);
const PPress sat = phaseSaturations(eqreg, cells, props, press);
for (int p = 0, np = props.numPhases(); p < np; ++p) {
PVal& d = pp_[p];
PVal::const_iterator s = press[p].begin();
for (typename RMap::CellRange::const_iterator
c = cells.begin(),
e = cells.end();
c != e; ++c, ++s)
{
d[*c] = *s;
}
}
for (int p = 0, np = props.numPhases(); p < np; ++p) {
PVal& d = sat_[p];
PVal::const_iterator s = sat[p].begin();
for (typename RMap::CellRange::const_iterator
c = cells.begin(),
e = cells.end();
c != e; ++c, ++s)
{
d[*c] = *s;
}
}
}
}
};
} // namespace DeckDependent
} // namespace equil
} // namespace Opm
#include <opm/core/simulator/initStateEquil_impl.hpp>
#endif // OPM_INITSTATEEQUIL_HEADER_INCLUDED