opm-simulators/opm/autodiff/RateConverter.hpp

657 lines
22 KiB
C++
Raw Normal View History

/*
Copyright 2014 SINTEF ICT, Applied Mathematics.
Copyright 2014 Statoil ASA.
This file is part of the Open Porous Media Project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_RATECONVERTER_HPP_HEADER_INCLUDED
#define OPM_RATECONVERTER_HPP_HEADER_INCLUDED
#include <opm/autodiff/BlackoilPropsAdInterface.hpp>
#include <opm/core/props/BlackoilPhases.hpp>
#include <opm/core/simulator/BlackoilState.hpp>
#include <opm/core/utility/RegionMapping.hpp>
#include <Eigen/Core>
#include <algorithm>
#include <cmath>
#include <vector>
/**
* \file
* Facility for converting component rates at surface conditions to
* phase (voidage) rates at reservoir conditions.
*
* This uses the average hydrocarbon pressure to define fluid
* properties. The facility is intended to support Reservoir Voidage
* rates only ('RESV').
*/
namespace Opm {
namespace RateConverter {
/**
* Convenience tools for implementing the rate conversion
* facility.
*/
namespace Details {
/**
* Count number of cells in all regions.
*
* This value is needed to compute the average (arithmetic
* mean) hydrocarbon pressure in each region.
*
* \tparam RMap Region mapping. Typically an instance of
* class Opm::RegionMapping<> from module opm-core.
*
* \param[in] m Specific region mapping.
*
* \return Array containing number of cells in each region
* defined by the region mapping.
*/
template <class RMap>
Eigen::ArrayXd
countCells(const RMap& m)
{
// Note: Floating point type (double) to represent
// cell counts is intentional. The count will be
// subsequently used to compute average (pressure)
// values only, and that operation is safer if we
// guarantee a floating point type here.
Eigen::ArrayXd n(m.numRegions());
for (typename RMap::RegionId
r = 0, nr = m.numRegions(); r < nr; ++r)
{
n(r) = double(m.cells(r).size());
}
return n;
}
/**
* Extract representative cell in each region.
*
* These are the cells for which fluid properties will be
* computed.
*
* \tparam Cells Type of cell container. Must be
* commensurable with the properties object's input
* requirements and support a single (integer) argument
* constructor that specifies the number of regions.
* Typically \code std::vector<int> \endcode.
*
* \tparam RMap Region mapping. Typically an instance of
* class Opm::RegionMapping<> from module opm-core.
*
* \param[in] m Specific region mapping.
*
* \return Array of representative cells, one cell in each
* region defined by @c m.
*/
template <class Cells, class RMap>
Cells
representative(const RMap& m)
{
Cells c(m.numRegions());
for (typename RMap::RegionId
r = 0, nr = m.numRegions(); r < nr; ++r)
{
c[r] = *m.cells(r).begin();
}
return c;
}
/**
* Convenience functions for querying presence/absence of
* active phases.
*/
namespace PhaseUsed {
/**
* Active water predicate.
*
* \param[in] pu Active phase object.
*
* \return Whether or not water is an active phase.
*/
inline bool
water(const PhaseUsage& pu)
{
return pu.phase_used[ BlackoilPhases::Aqua ] != 0;
}
/**
* Active oil predicate.
*
* \param[in] pu Active phase object.
*
* \return Whether or not oil is an active phase.
*/
inline bool
oil(const PhaseUsage& pu)
{
return pu.phase_used[ BlackoilPhases::Liquid ] != 0;
}
/**
* Active gas predicate.
*
* \param[in] pu Active phase object.
*
* \return Whether or not gas is an active phase.
*/
inline bool
gas(const PhaseUsage& pu)
{
return pu.phase_used[ BlackoilPhases::Vapour ] != 0;
}
} // namespace PhaseUsed
/**
* Convenience functions for querying numerical IDs
* ("positions") of active phases.
*/
namespace PhasePos {
/**
* Numerical ID of active water phase.
*
* \param[in] pu Active phase object.
*
* \return Non-negative index/position of water if
* active, -1 if not.
*/
inline int
water(const PhaseUsage& pu)
{
int p = -1;
if (PhaseUsed::water(pu)) {
p = pu.phase_pos[ BlackoilPhases::Aqua ];
}
return p;
}
/**
* Numerical ID of active oil phase.
*
* \param[in] pu Active phase object.
*
* \return Non-negative index/position of oil if
* active, -1 if not.
*/
inline int
oil(const PhaseUsage& pu)
{
int p = -1;
if (PhaseUsed::oil(pu)) {
p = pu.phase_pos[ BlackoilPhases::Liquid ];
}
return p;
}
/**
* Numerical ID of active gas phase.
*
* \param[in] pu Active phase object.
*
* \return Non-negative index/position of gas if
* active, -1 if not.
*/
inline int
gas(const PhaseUsage& pu)
{
int p = -1;
if (PhaseUsed::gas(pu)) {
p = pu.phase_pos[ BlackoilPhases::Vapour ];
}
return p;
}
} // namespace PhasePos
} // namespace Details
/**
* Convert component rates at surface conditions to phase
* (voidage) rates at reservoir conditions.
*
* The conversion uses fluid properties evaluated at average
* hydrocarbon pressure in regions or field.
*
* \tparam Property Fluid property object. Expected to
* feature the formation volume factor functions of the
* BlackoilPropsAdInterface.
*
* \tparam Region Type of a forward region mapping. Expected
* to provide indexed access through \code operator[]()
* \endcode as well as inner types \c value_type, \c
* size_type, and \c const_iterator. Typically \code
* std::vector<int> \endcode.
*/
template <class Property, class Region>
class SurfaceToReservoirVoidage {
public:
/**
* Constructor.
*
* \param[in] props Fluid property object.
*
* \param[in] region Forward region mapping. Often
* corresponds to the "FIPNUM" mapping of an ECLIPSE input
* deck.
*/
SurfaceToReservoirVoidage(const Property& props,
const Region& region)
: props_ (props)
, rmap_ (region)
, repcells_(Details::representative<typename Property::Cells>(rmap_))
, ncells_ (Details::countCells(rmap_))
, p_avg_ (rmap_.numRegions())
, T_avg_ (rmap_.numRegions())
, Rmax_ (rmap_.numRegions(), props.numPhases())
{}
/**
* Compute average hydrocarbon pressure and maximum
* dissolution and evaporation at average hydrocarbon
* pressure in all regions in field.
*
* Fluid properties are evaluated at average hydrocarbon
* pressure for purpose of conversion from surface rate to
* reservoir voidage rate.
*
* \param[in] state Dynamic reservoir state.
*/
void
defineState(const BlackoilState& state)
{
averagePressure(state);
averageTemperature(state);
calcRmax();
}
/**
* Region identifier.
*
* Integral type.
*/
typedef typename RegionMapping<Region>::RegionId RegionId;
/**
* Compute coefficients for surface-to-reservoir voidage
* conversion.
*
* \tparam Input Type representing contiguous collection
* of component rates at surface conditions. Must support
* direct indexing through \code operator[]()\endcode.
*
* \tparam Coeff Type representing contiguous collection
* of surface-to-reservoir conversion coefficients. Must
* support direct indexing through \code operator[]()
* \endcode.
*
* \param[in] in Single tuple of active component rates at
* surface conditions.
*
* \param[in] r Fluid-in-place region to which the
* component rates correspond.
*
* \param[out] coeff Surface-to-reservoir conversion
* coefficients for all active phases, corresponding to
* input rates \c in in region \c r.
*/
template <class Input,
class Coeff>
void
calcCoeff(const Input& in, const RegionId r, Coeff& coeff)
{
typedef typename Property::V V;
const PhaseUsage& pu = props_.phaseUsage();
const V& p = getRegPress(r);
const V& T = getRegTemp(r);
const typename Property::Cells& c = getRegCell (r);
const int iw = Details::PhasePos::water(pu);
const int io = Details::PhasePos::oil (pu);
const int ig = Details::PhasePos::gas (pu);
std::fill(& coeff[0], & coeff[0] + props_.numPhases(), 0.0);
if (Details::PhaseUsed::water(pu)) {
// q[w]_r = q[w]_s / bw
const V& bw = props_.bWat(p, T, c);
coeff[iw] = 1.0 / bw(0);
}
const Miscibility& m = calcMiscibility(in, r);
// Determinant of 'R' matrix
const double detR = 1.0 - (m.rs(0) * m.rv(0));
if (Details::PhaseUsed::oil(pu)) {
// q[o]_r = 1/(bo * (1 - rs*rv)) * (q[o]_s - rv*q[g]_s)
const V& bo = props_.bOil(p, T, m.rs, m.cond, c);
const double den = bo(0) * detR;
coeff[io] += 1.0 / den;
if (Details::PhaseUsed::gas(pu)) {
coeff[ig] -= m.rv(0) / den;
}
}
if (Details::PhaseUsed::gas(pu)) {
// q[g]_r = 1/(bg * (1 - rs*rv)) * (q[g]_s - rs*q[o]_s)
const V& bg = props_.bGas(p, T, m.rv, m.cond, c);
const double den = bg(0) * detR;
coeff[ig] += 1.0 / den;
if (Details::PhaseUsed::oil(pu)) {
coeff[io] -= m.rs(0) / den;
}
}
}
private:
/**
* Fluid property object.
*/
const Property& props_;
/**
* "Fluid-in-place" region mapping (forward and reverse).
*/
const RegionMapping<Region> rmap_;
/**
* Representative cells in each FIP region.
*/
const typename Property::Cells repcells_;
/**
* Number of cells in each region.
*
* Floating-point type (double) for purpose of average
* pressure calculation.
*/
const Eigen::ArrayXd ncells_;
/**
* Average hydrocarbon pressure in each FIP region.
*/
Eigen::ArrayXd p_avg_;
/**
* Average temperature in each FIP region.
*/
Eigen::ArrayXd T_avg_;
/**
* Maximum dissolution and evaporation ratios at average
* hydrocarbon pressure.
*
* Size (number of regions)-by-(number of fluid phases).
* Water value is, strictly speaking, wasted if present.
*/
Eigen::ArrayXXd Rmax_;
/**
* Aggregate structure defining fluid miscibility
* conditions in single region with particular input
* surface rates.
*/
struct Miscibility {
Miscibility()
: rs (1)
, rv (1)
, cond(1)
{
rs << 0.0;
rv << 0.0;
}
/**
* Dissolved gas-oil ratio at particular component oil
* and gas rates at surface conditions.
*
* Limited by "RSmax" at average hydrocarbon pressure
* in region.
*/
typename Property::V rs;
/**
* Evaporated oil-gas ratio at particular component oil
* and gas rates at surface conditions.
*
* Limited by "RVmax" at average hydrocarbon pressure
* in region.
*/
typename Property::V rv;
/**
* Fluid condition in representative region cell.
*
* Needed for purpose of FVF evaluation.
*/
std::vector<PhasePresence> cond;
};
/**
* Compute average hydrocarbon pressure in all regions.
*
* \param[in] state Dynamic reservoir state.
*/
void
averagePressure(const BlackoilState& state)
{
p_avg_.setZero();
const std::vector<double>& p = state.pressure();
for (std::vector<double>::size_type
i = 0, n = p.size(); i < n; ++i)
{
p_avg_(rmap_.region(i)) += p[i];
}
p_avg_ /= ncells_;
}
/**
* Compute average temperature in all regions.
*
* \param[in] state Dynamic reservoir state.
*/
void
averageTemperature(const BlackoilState& state)
{
T_avg_.setZero();
const std::vector<double>& T = state.temperature();
for (std::vector<double>::size_type
i = 0, n = T.size(); i < n; ++i)
{
T_avg_(rmap_.region(i)) += T[i];
}
T_avg_ /= ncells_;
}
/**
* Compute maximum dissolution and evaporation ratios at
* average hydrocarbon pressure.
*
* Uses the pressure value computed by averagePressure()
* and must therefore be called *after* that method.
*/
void
calcRmax()
{
Rmax_.setZero();
const PhaseUsage& pu = props_.phaseUsage();
if (Details::PhaseUsed::oil(pu) &&
Details::PhaseUsed::gas(pu))
{
const Eigen::ArrayXXd::Index
io = Details::PhasePos::oil(pu),
ig = Details::PhasePos::gas(pu);
// Note: Intentionally does not take capillary
// pressure into account. This facility uses the
// average *hydrocarbon* pressure rather than
// average phase pressure.
Rmax_.col(io) = props_.rsSat(p_avg_, T_avg_, repcells_);
Rmax_.col(ig) = props_.rvSat(p_avg_, T_avg_, repcells_);
}
}
/**
* Compute fluid conditions in particular region for a
* given set of component rates at surface conditions.
*
* \tparam Input Type representing collection of (active)
* component rates at surface conditions. Must support
* direct indexing through \code operator[]()\endcode.
*
* \param[in] in Single tuple of active component rates at
* surface conditions.
*
* \param[in] r Fluid-in-place region to which the
* component rates correspond.
*
* \return Fluid conditions in region \c r corresponding
* to surface component rates \c in.
*/
template <class Input>
Miscibility
calcMiscibility(const Input& in, const RegionId r) const
{
const PhaseUsage& pu = props_.phaseUsage();
const int io = Details::PhasePos::oil(pu);
const int ig = Details::PhasePos::gas(pu);
Miscibility m;
PhasePresence& cond = m.cond[0];
if (Details::PhaseUsed::water(pu)) {
cond.setFreeWater();
}
if (Details::PhaseUsed::oil(pu)) {
cond.setFreeOil();
if (Details::PhaseUsed::gas(pu)) {
const double rsmax = Rmax_(r, io);
const double rs =
(0.0 < std::abs(in[io]))
? in[ig] / in[io]
: (0.0 < std::abs(in[ig])) ? rsmax : 0.0;
if (rsmax < rs) {
cond.setFreeGas();
}
m.rs(0) = std::min(rs, rsmax);
}
}
if (Details::PhaseUsed::gas(pu)) {
if (! Details::PhaseUsed::oil(pu)) {
// Oil *NOT* active -- not really supported.
cond.setFreeGas();
}
if (Details::PhaseUsed::oil(pu)) {
const double rvmax = Rmax_(r, ig);
const double rv =
(0.0 < std::abs(in[ig]))
? (in[io] / in[ig])
: (0.0 < std::abs(in[io])) ? rvmax : 0.0;
m.rv(0) = std::min(rv, rvmax);
}
}
return m;
}
/**
* Retrieve average hydrocarbon pressure in region.
*
* \param[in] r Particular region.
*
* \return Average hydrocarbon pressure in region \c r.
*/
typename Property::V
getRegPress(const RegionId r) const
{
typename Property::V p(1);
p << p_avg_(r);
return p;
}
/**
* Retrieve average temperature in region.
*
* \param[in] r Particular region.
*
* \return Average temperature in region \c r.
*/
typename Property::V
getRegTemp(const RegionId r) const
{
typename Property::V T(1);
T << T_avg_(r);
return T;
}
/**
* Retrieve representative cell of region
*
* \param[in] r Particular region.
*
* \return Representative cell of region \c r.
*/
typename Property::Cells
getRegCell(const RegionId r) const
{
typename Property::Cells c(1, repcells_[r]);
return c;
}
};
} // namespace RateConverter
} // namespace Opm
#endif /* OPM_RATECONVERTER_HPP_HEADER_INCLUDED */