2014-09-30 01:53:38 -05:00
|
|
|
/*
|
2015-08-24 06:55:16 -05:00
|
|
|
Copyright 2014, 2015 SINTEF ICT, Applied Mathematics.
|
2014-09-30 01:53:38 -05:00
|
|
|
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
|
|
it under the terms of the GNU General Public License as published by
|
|
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
|
|
(at your option) any later version.
|
|
|
|
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#ifndef OPM_AUTODIFFMATRIX_HEADER_INCLUDED
|
|
|
|
#define OPM_AUTODIFFMATRIX_HEADER_INCLUDED
|
|
|
|
|
|
|
|
#include <opm/core/utility/platform_dependent/disable_warnings.h>
|
|
|
|
|
|
|
|
#include <Eigen/Eigen>
|
|
|
|
#include <Eigen/Sparse>
|
|
|
|
|
|
|
|
#include <opm/core/utility/platform_dependent/reenable_warnings.h>
|
|
|
|
|
|
|
|
|
|
|
|
namespace Opm
|
|
|
|
{
|
|
|
|
|
2015-08-24 06:55:16 -05:00
|
|
|
class AutoDiffMatrix
|
2014-09-30 01:53:38 -05:00
|
|
|
{
|
2015-08-24 06:55:16 -05:00
|
|
|
public:
|
|
|
|
AutoDiffMatrix()
|
|
|
|
: type_(Z),
|
|
|
|
rows_(0),
|
|
|
|
cols_(0)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
enum CreationType { ZeroMatrix, IdentityMatrix };
|
|
|
|
|
|
|
|
|
|
|
|
AutoDiffMatrix(const CreationType t, const int rows)
|
|
|
|
: type_(t == ZeroMatrix ? Z : I),
|
|
|
|
rows_(rows),
|
|
|
|
cols_(rows)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
explicit AutoDiffMatrix(const Eigen::DiagonalMatrix<double, Eigen::Dynamic>& d)
|
|
|
|
: type_(D),
|
|
|
|
rows_(d.rows()),
|
|
|
|
cols_(d.cols()),
|
|
|
|
d_(d)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
explicit AutoDiffMatrix(const Eigen::SparseMatrix<double>& s)
|
|
|
|
: type_(S),
|
|
|
|
rows_(s.rows()),
|
|
|
|
cols_(s.cols()),
|
|
|
|
s_(s)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
AutoDiffMatrix operator+(const AutoDiffMatrix& rhs) const
|
|
|
|
{
|
|
|
|
switch (type_) {
|
|
|
|
case Z:
|
|
|
|
return rhs;
|
|
|
|
case I:
|
|
|
|
switch (rhs.type_) {
|
|
|
|
case Z:
|
|
|
|
return *this;
|
|
|
|
case I:
|
|
|
|
return sumII(*this, rhs);
|
|
|
|
case D:
|
|
|
|
return rhs + (*this);
|
|
|
|
case S:
|
|
|
|
return rhs + (*this);
|
|
|
|
}
|
|
|
|
case D:
|
|
|
|
switch (rhs.type_) {
|
|
|
|
case Z:
|
|
|
|
return *this;
|
|
|
|
case I:
|
|
|
|
return sumDI(*this, rhs);
|
|
|
|
case D:
|
|
|
|
return sumDD(*this, rhs);
|
|
|
|
case S:
|
|
|
|
return rhs + (*this);
|
|
|
|
}
|
|
|
|
case S:
|
|
|
|
switch (rhs.type_) {
|
|
|
|
case Z:
|
|
|
|
return *this;
|
|
|
|
case I:
|
|
|
|
return sumSI(*this, rhs);
|
|
|
|
case D:
|
|
|
|
return sumSD(*this, rhs);
|
|
|
|
case S:
|
|
|
|
return sumSS(*this, rhs);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
AutoDiffMatrix operator*(const AutoDiffMatrix& rhs) const
|
|
|
|
{
|
|
|
|
switch (type_) {
|
|
|
|
case Z:
|
|
|
|
return *this;
|
|
|
|
case I:
|
|
|
|
switch (rhs.type_) {
|
|
|
|
case Z:
|
|
|
|
return rhs;
|
|
|
|
case I:
|
|
|
|
return rhs;
|
|
|
|
case D:
|
|
|
|
return rhs;
|
|
|
|
case S:
|
|
|
|
return rhs;
|
|
|
|
}
|
|
|
|
case D:
|
|
|
|
switch (rhs.type_) {
|
|
|
|
case Z:
|
|
|
|
return rhs;
|
|
|
|
case I:
|
|
|
|
return *this;
|
|
|
|
case D:
|
|
|
|
return prodDD(*this, rhs);
|
|
|
|
case S:
|
|
|
|
return prodDS(*this, rhs);
|
|
|
|
}
|
|
|
|
case S:
|
|
|
|
switch (rhs.type_) {
|
|
|
|
case Z:
|
|
|
|
return rhs;
|
|
|
|
case I:
|
|
|
|
return *this;
|
|
|
|
case D:
|
|
|
|
return prodSD(*this, rhs);
|
|
|
|
case S:
|
|
|
|
return prodSS(*this, rhs);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static AutoDiffMatrix sumII(const AutoDiffMatrix& lhs, const AutoDiffMatrix& rhs)
|
|
|
|
{
|
|
|
|
assert(lhs.type_ == I);
|
|
|
|
assert(rhs.type_ == I);
|
|
|
|
AutoDiffMatrix retval;
|
|
|
|
retval.type_ = D;
|
|
|
|
retval.rows_ = lhs.rows_;
|
|
|
|
retval.cols_ = rhs.cols_;
|
|
|
|
retval.d_ = Eigen::VectorXd::Constant(lhs.rows_, 2.0).asDiagonal();
|
|
|
|
return retval;
|
|
|
|
}
|
|
|
|
|
|
|
|
static AutoDiffMatrix sumDI(const AutoDiffMatrix& lhs, const AutoDiffMatrix& rhs)
|
|
|
|
{
|
|
|
|
assert(lhs.type_ == D);
|
|
|
|
assert(rhs.type_ == I);
|
|
|
|
AutoDiffMatrix retval = lhs;
|
|
|
|
for (int r = 0; r < lhs.rows_; ++r) {
|
|
|
|
retval.d_.diagonal()(r) += 1.0;
|
|
|
|
}
|
|
|
|
return retval;
|
|
|
|
}
|
|
|
|
|
|
|
|
static AutoDiffMatrix sumDD(const AutoDiffMatrix& lhs, const AutoDiffMatrix& rhs)
|
|
|
|
{
|
|
|
|
assert(lhs.type_ == D);
|
|
|
|
assert(rhs.type_ == D);
|
|
|
|
AutoDiffMatrix retval = lhs;
|
|
|
|
for (int r = 0; r < lhs.rows_; ++r) {
|
|
|
|
retval.d_.diagonal()(r) += rhs.d_.diagonal()(r);
|
|
|
|
}
|
|
|
|
return retval;
|
|
|
|
}
|
|
|
|
|
|
|
|
static AutoDiffMatrix sumSI(const AutoDiffMatrix& lhs, const AutoDiffMatrix& rhs)
|
|
|
|
{
|
|
|
|
assert(lhs.type_ == S);
|
|
|
|
assert(rhs.type_ == I);
|
|
|
|
AutoDiffMatrix retval;
|
|
|
|
Eigen::SparseMatrix<double> ident = spdiag(Eigen::VectorXd::Ones(lhs.rows_));
|
|
|
|
retval.type_ = S;
|
|
|
|
retval.rows_ = lhs.rows_;
|
|
|
|
retval.cols_ = rhs.cols_;
|
|
|
|
retval.s_ = lhs.s_ + ident;
|
|
|
|
return retval;
|
|
|
|
}
|
|
|
|
|
|
|
|
static AutoDiffMatrix sumSD(const AutoDiffMatrix& lhs, const AutoDiffMatrix& rhs)
|
|
|
|
{
|
|
|
|
assert(lhs.type_ == S);
|
|
|
|
assert(rhs.type_ == D);
|
|
|
|
AutoDiffMatrix retval;
|
|
|
|
Eigen::SparseMatrix<double> diag = spdiag(rhs.d_.diagonal());
|
|
|
|
retval.type_ = S;
|
|
|
|
retval.rows_ = lhs.rows_;
|
|
|
|
retval.cols_ = rhs.cols_;
|
|
|
|
retval.s_ = lhs.s_ + diag;
|
|
|
|
return retval;
|
|
|
|
}
|
|
|
|
|
|
|
|
static AutoDiffMatrix sumSS(const AutoDiffMatrix& lhs, const AutoDiffMatrix& rhs)
|
|
|
|
{
|
|
|
|
assert(lhs.type_ == S);
|
|
|
|
assert(rhs.type_ == S);
|
|
|
|
AutoDiffMatrix retval;
|
|
|
|
retval.type_ = S;
|
|
|
|
retval.rows_ = lhs.rows_;
|
|
|
|
retval.cols_ = rhs.cols_;
|
|
|
|
retval.s_ = lhs.s_ + rhs.s_;
|
|
|
|
return retval;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static AutoDiffMatrix prodDD(const AutoDiffMatrix& lhs, const AutoDiffMatrix& rhs)
|
|
|
|
{
|
|
|
|
assert(lhs.type_ == D);
|
|
|
|
assert(rhs.type_ == D);
|
|
|
|
AutoDiffMatrix retval = lhs;
|
|
|
|
for (int r = 0; r < lhs.rows_; ++r) {
|
|
|
|
retval.d_.diagonal().array() *= rhs.d_.diagonal().array();
|
|
|
|
}
|
|
|
|
return retval;
|
|
|
|
}
|
|
|
|
|
|
|
|
static AutoDiffMatrix prodDS(const AutoDiffMatrix& lhs, const AutoDiffMatrix& rhs)
|
|
|
|
{
|
|
|
|
assert(lhs.type_ == S);
|
|
|
|
assert(rhs.type_ == D);
|
|
|
|
AutoDiffMatrix retval;
|
|
|
|
Eigen::SparseMatrix<double> diag = spdiag(rhs.d_.diagonal());
|
|
|
|
retval.type_ = S;
|
|
|
|
retval.rows_ = lhs.rows_;
|
|
|
|
retval.cols_ = rhs.cols_;
|
|
|
|
retval.s_ = lhs.s_ * diag;
|
|
|
|
return retval;
|
|
|
|
}
|
|
|
|
|
|
|
|
static AutoDiffMatrix prodSD(const AutoDiffMatrix& lhs, const AutoDiffMatrix& rhs)
|
|
|
|
{
|
|
|
|
assert(lhs.type_ == S);
|
|
|
|
assert(rhs.type_ == D);
|
|
|
|
AutoDiffMatrix retval;
|
|
|
|
Eigen::SparseMatrix<double> diag = spdiag(rhs.d_.diagonal());
|
|
|
|
retval.type_ = S;
|
|
|
|
retval.rows_ = lhs.rows_;
|
|
|
|
retval.cols_ = rhs.cols_;
|
|
|
|
retval.s_ = diag * lhs.s_;
|
|
|
|
return retval;
|
|
|
|
}
|
|
|
|
|
|
|
|
static AutoDiffMatrix prodSS(const AutoDiffMatrix& lhs, const AutoDiffMatrix& rhs)
|
|
|
|
{
|
|
|
|
assert(lhs.type_ == S);
|
|
|
|
assert(rhs.type_ == S);
|
|
|
|
AutoDiffMatrix retval;
|
|
|
|
retval.type_ = S;
|
|
|
|
retval.rows_ = lhs.rows_;
|
|
|
|
retval.cols_ = rhs.cols_;
|
|
|
|
retval.s_ = lhs.s_ * rhs.s_;
|
|
|
|
return retval;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void toSparse(Eigen::SparseMatrix<double>& s) const
|
|
|
|
{
|
|
|
|
switch (type_) {
|
|
|
|
case Z:
|
|
|
|
s = Eigen::SparseMatrix<double>(rows_, cols_);
|
|
|
|
return;
|
|
|
|
case I:
|
|
|
|
s = spdiag(Eigen::VectorXd::Ones(rows_));
|
|
|
|
return;
|
|
|
|
case D:
|
|
|
|
s = spdiag(d_.diagonal());
|
|
|
|
return;
|
|
|
|
case S:
|
|
|
|
s = s_;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
enum MatrixType { Z, I, D, S };
|
|
|
|
MatrixType type_;
|
|
|
|
int rows_;
|
|
|
|
int cols_;
|
|
|
|
Eigen::DiagonalMatrix<double, Eigen::Dynamic> d_;
|
|
|
|
Eigen::SparseMatrix<double> s_;
|
|
|
|
|
|
|
|
|
|
|
|
template <class V>
|
|
|
|
static inline
|
|
|
|
Eigen::SparseMatrix<double>
|
|
|
|
spdiag(const V& d)
|
|
|
|
{
|
|
|
|
typedef Eigen::SparseMatrix<double> M;
|
|
|
|
const int n = d.size();
|
|
|
|
M mat(n, n);
|
|
|
|
mat.reserve(Eigen::ArrayXi::Ones(n, 1));
|
|
|
|
for (M::Index i = 0; i < n; ++i) {
|
|
|
|
mat.insert(i, i) = d[i];
|
|
|
|
}
|
|
|
|
|
|
|
|
return mat;
|
|
|
|
}
|
|
|
|
|
|
|
|
};
|
2014-09-30 01:53:38 -05:00
|
|
|
|
|
|
|
} // namespace Opm
|
|
|
|
|
|
|
|
|
|
|
|
#endif // OPM_AUTODIFFMATRIX_HEADER_INCLUDED
|