opm-simulators/opm/autodiff/MSWellHelpers.hpp

138 lines
4.2 KiB
C++
Raw Normal View History

2017-09-27 09:11:39 -05:00
/*
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
Copyright 2017 Statoil ASA.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_MSWELLHELPERS_HEADER_INCLUDED
#define OPM_MSWELLHELPERS_HEADER_INCLUDED
#include <dune/istl/solvers.hh>
#include <cmath>
2017-09-27 09:11:39 -05:00
namespace Opm {
namespace mswellhelpers
{
// obtain y = D^-1 * x
template<typename MatrixType, typename VectorType>
VectorType
invDX(const MatrixType& D, VectorType x)
{
// the function will change the value of x, so we should not use reference of x here.
// TODO: store some of the following information to avoid to call it again and again for
// efficiency improvement.
// Bassically, only the solve / apply step is different.
VectorType y(x.size());
y = 0.;
Dune::MatrixAdapter<MatrixType, VectorType, VectorType> linearOperator(D);
// Sequential incomplete LU decomposition as the preconditioner
Dune::SeqILU0<MatrixType, VectorType, VectorType> preconditioner(D, 1.0);
// Preconditioned BICGSTAB solver
Dune::BiCGSTABSolver<VectorType> linsolver(linearOperator,
preconditioner,
1.e-6, // desired residual reduction factor
50, // maximum number of iterations
0); // verbosity of the solver
// Object storing some statistics about the solving process
Dune::InverseOperatorResult statistics ;
// Solve
linsolver.apply(y, x, statistics );
return y;
}
static double haalandFormular(const double re, const double diameter, const double roughness)
{
const double value = std::exp(10. / 9. * std::log(roughness / (3.7 * diameter)) );
return -3.6 * std::log10( 6.9 / re + value);
}
static double calculateFrictionFactor(const double area, const double diameter,
const double w, const double roughness, const double mu)
{
double f = 0.;
// Reynolds number
const double re = std::abs(diameter * w / (area * mu));
assert(re > 0.0);
const double re_value1 = 200.;
const double re_value2 = 4000.;
if (re < re_value1) {
f = 16. / re;
} else if (re > re_value2){
f = haalandFormular(re, diameter, roughness);
} else { // in between
const double f1 = 16. / re_value1;
const double f2 = haalandFormular(re_value2, diameter, roughness);
f = (f2 - f1) / (re_value2 - re_value1) * (re - re_value1) + f1;
}
return f;
}
// TODO: not sure whether mu, density and mass flow rate should be Evaluation
// only use its value for now.
// l is the segment length
// area is the segment cross area
// diameter is the segment inner diameter
// w is mass flow rate through the segment
// density is density
// roughness is the absolute roughness
// mu is the average phase viscosity
template <class ValueType>
ValueType frictionPressureLoss(const double l, const double diameter, const double area, const ValueType& density,
const ValueType& w, const double roughness, const ValueType& mu)
{
const double f = calculateFrictionFactor(area, diameter, w.value(), roughness, mu.value());
return f * l * w * w / (area * area * diameter * density);
}
2017-09-27 09:11:39 -05:00
} // namespace mswellhelpers
}
#endif