opm-simulators/opm/core/utility/miscUtilitiesBlackoil.cpp

329 lines
15 KiB
C++
Raw Normal View History

/*
Copyright 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <opm/core/utility/miscUtilitiesBlackoil.hpp>
#include <opm/core/utility/Units.hpp>
#include <opm/core/grid.h>
#include <opm/core/newwells.h>
#include <opm/core/fluid/BlackoilPropertiesInterface.hpp>
#include <opm/core/simulator/BlackoilState.hpp>
#include <opm/core/simulator/WellState.hpp>
#include <opm/core/utility/ErrorMacros.hpp>
#include <algorithm>
#include <functional>
#include <cmath>
#include <iterator>
namespace Opm
{
/// @brief Computes injected and produced surface volumes of all phases.
/// Note 1: assumes that only the first phase is injected.
/// Note 2: assumes that transport has been done with an
/// implicit method, i.e. that the current state
/// gives the mobilities used for the preceding timestep.
/// Note 3: Gives surface volume values, not reservoir volumes
/// (as the incompressible version of the function does).
/// Also, assumes that transport_src is given in surface volumes
/// for injector terms!
/// @param[in] props fluid and rock properties.
/// @param[in] state state variables (pressure, sat, surfvol)
/// @param[in] transport_src if < 0: total resv outflow, if > 0: first phase surfv inflow
/// @param[in] dt timestep used
/// @param[out] injected must point to a valid array with P elements,
/// where P = s.size()/src.size().
/// @param[out] produced must also point to a valid array with P elements.
void computeInjectedProduced(const BlackoilPropertiesInterface& props,
const BlackoilState& state,
const std::vector<double>& transport_src,
2012-08-23 01:59:09 -05:00
const double dt,
double* injected,
double* produced)
{
const int num_cells = transport_src.size();
if (props.numCells() != num_cells) {
THROW("Size of transport_src vector does not match number of cells in props.");
2012-08-23 01:59:09 -05:00
}
const int np = props.numPhases();
if (int(state.saturation().size()) != num_cells*np) {
THROW("Sizes of state vectors do not match number of cells.");
}
const std::vector<double>& press = state.pressure();
const std::vector<double>& s = state.saturation();
const std::vector<double>& z = state.surfacevol();
2012-08-23 01:59:09 -05:00
std::fill(injected, injected + np, 0.0);
std::fill(produced, produced + np, 0.0);
std::vector<double> visc(np);
2012-08-23 01:59:09 -05:00
std::vector<double> mob(np);
std::vector<double> A(np*np);
std::vector<double> prod_resv_phase(np);
std::vector<double> prod_surfvol(np);
2012-08-23 01:59:09 -05:00
for (int c = 0; c < num_cells; ++c) {
if (transport_src[c] > 0.0) {
injected[0] += transport_src[c]*dt;
} else if (transport_src[c] < 0.0) {
const double flux = -transport_src[c]*dt;
2012-08-23 01:59:09 -05:00
const double* sat = &s[np*c];
props.relperm(1, sat, &c, &mob[0], 0);
2012-05-16 05:52:58 -05:00
props.viscosity(1, &press[c], &z[np*c], &c, &visc[0], 0);
props.matrix(1, &press[c], &z[np*c], &c, &A[0], 0);
2012-08-23 01:59:09 -05:00
double totmob = 0.0;
for (int p = 0; p < np; ++p) {
mob[p] /= visc[p];
totmob += mob[p];
}
std::fill(prod_surfvol.begin(), prod_surfvol.end(), 0.0);
2012-08-23 01:59:09 -05:00
for (int p = 0; p < np; ++p) {
prod_resv_phase[p] = (mob[p]/totmob)*flux;
for (int q = 0; q < np; ++q) {
prod_surfvol[q] += prod_resv_phase[p]*A[q + np*p];
}
}
for (int p = 0; p < np; ++p) {
produced[p] += prod_surfvol[p];
2012-08-23 01:59:09 -05:00
}
}
}
}
/// @brief Computes total mobility for a set of saturation values.
/// @param[in] props rock and fluid properties
/// @param[in] cells cells with which the saturation values are associated
/// @param[in] p pressure (one value per cell)
/// @param[in] z surface-volume values (for all P phases)
/// @param[in] s saturation values (for all phases)
/// @param[out] totmob total mobilities.
void computeTotalMobility(const Opm::BlackoilPropertiesInterface& props,
2012-08-23 01:59:09 -05:00
const std::vector<int>& cells,
2012-05-16 05:52:58 -05:00
const std::vector<double>& press,
const std::vector<double>& z,
2012-08-23 01:59:09 -05:00
const std::vector<double>& s,
std::vector<double>& totmob)
{
std::vector<double> pmobc;
2012-05-16 05:52:58 -05:00
computePhaseMobilities(props, cells, press, z, s, pmobc);
const std::size_t np = props.numPhases();
const std::vector<int>::size_type nc = cells.size();
totmob.clear();
totmob.resize(nc, 0.0);
for (std::vector<int>::size_type c = 0; c < nc; ++c) {
for (std::size_t p = 0; p < np; ++p) {
totmob[ c ] += pmobc[c*np + p];
}
}
}
/*
/// @brief Computes total mobility and omega for a set of saturation values.
/// @param[in] props rock and fluid properties
/// @param[in] cells cells with which the saturation values are associated
/// @param[in] p pressure (one value per cell)
/// @param[in] z surface-volume values (for all P phases)
/// @param[in] s saturation values (for all phases)
/// @param[out] totmob total mobility
/// @param[out] omega fractional-flow weighted fluid densities.
void computeTotalMobilityOmega(const Opm::BlackoilPropertiesInterface& props,
2012-08-23 01:59:09 -05:00
const std::vector<int>& cells,
const std::vector<double>& p,
const std::vector<double>& z,
2012-08-23 01:59:09 -05:00
const std::vector<double>& s,
std::vector<double>& totmob,
std::vector<double>& omega)
{
std::vector<double> pmobc;
computePhaseMobilities(props, cells, p, z, s, pmobc);
const std::size_t np = props.numPhases();
const std::vector<int>::size_type nc = cells.size();
totmob.clear();
totmob.resize(nc, 0.0);
omega.clear();
omega.resize(nc, 0.0);
const double* rho = props.density();
for (std::vector<int>::size_type c = 0; c < nc; ++c) {
for (std::size_t p = 0; p < np; ++p) {
totmob[ c ] += pmobc[c*np + p];
omega [ c ] += pmobc[c*np + p] * rho[ p ];
}
omega[ c ] /= totmob[ c ];
}
}
*/
/// @brief Computes phase mobilities for a set of saturation values.
/// @param[in] props rock and fluid properties
/// @param[in] cells cells with which the saturation values are associated
/// @param[in] p pressure (one value per cell)
/// @param[in] z surface-volume values (for all P phases)
/// @param[in] s saturation values (for all phases)
/// @param[out] pmobc phase mobilities (for all phases).
void computePhaseMobilities(const Opm::BlackoilPropertiesInterface& props,
const std::vector<int>& cells,
const std::vector<double>& p,
const std::vector<double>& z,
const std::vector<double>& s,
std::vector<double>& pmobc)
{
const int nc = props.numCells();
const int np = props.numPhases();
ASSERT (int(s.size()) == nc * np);
std::vector<double> mu(nc*np);
props.viscosity(nc, &p[0], &z[0], &cells[0], &mu[0], 0);
pmobc.clear();
pmobc.resize(nc*np, 0.0);
double* dpmobc = 0;
props.relperm(nc, &s[0], &cells[0],
&pmobc[0], dpmobc);
2012-08-23 01:59:09 -05:00
std::transform(pmobc.begin(), pmobc.end(),
mu.begin(),
pmobc.begin(),
std::divides<double>());
}
/// Computes the fractional flow for each cell in the cells argument
/// @param[in] props rock and fluid properties
/// @param[in] cells cells with which the saturation values are associated
/// @param[in] p pressure (one value per cell)
/// @param[in] z surface-volume values (for all P phases)
/// @param[in] s saturation values (for all phases)
/// @param[out] fractional_flow the fractional flow for each phase for each cell.
void computeFractionalFlow(const Opm::BlackoilPropertiesInterface& props,
const std::vector<int>& cells,
const std::vector<double>& p,
const std::vector<double>& z,
const std::vector<double>& s,
std::vector<double>& fractional_flows)
{
const int num_phases = props.numPhases();
computePhaseMobilities(props, cells, p, z, s, fractional_flows);
for (std::vector<int>::size_type i = 0; i < cells.size(); ++i) {
double phase_sum = 0.0;
for (int phase = 0; phase < num_phases; ++phase) {
phase_sum += fractional_flows[i * num_phases + phase];
}
for (int phase = 0; phase < num_phases; ++phase) {
fractional_flows[i * num_phases + phase] /= phase_sum;
}
}
}
/// Computes the surface volume densities from saturations by the formula
/// z = A s
/// for a number of data points, where z is the surface volume density,
/// s is the saturation (both as column vectors) and A is the
/// phase-to-component relation matrix.
/// @param[in] n number of data points
/// @param[in] np number of phases, must be 2 or 3
/// @param[in] A array containing n square matrices of size num_phases^2,
/// in Fortran ordering, typically the output of a call
/// to the matrix() method of a BlackoilProperties* class.
/// @param[in] saturation concatenated saturation values (for all P phases)
/// @param[out] surfacevol concatenated surface-volume values (for all P phases)
void computeSurfacevol(const int n,
const int np,
const double* A,
const double* saturation,
double* surfacevol)
{
// Note: since this is a simple matrix-vector product, it can
// be done by a BLAS call, but then we have to reorder the A
// matrix data.
std::fill(surfacevol, surfacevol + n*np, 0.0);
for (int i = 0; i < n; ++i) {
for (int col = 0; col < np; ++col) {
for (int row = 0; row < np; ++row) {
surfacevol[i*np + row] += A[i*np*np + row + col*np] * saturation[i*np + col];
}
}
}
}
/// Compute two-phase transport source terms from well terms.
/// Note: Unlike the incompressible version of this function,
/// this version computes surface volume injection rates,
/// production rates are still total reservoir volumes.
/// \param[in] props Fluid and rock properties.
/// \param[in] wells Wells data structure.
/// \param[in] well_state Well pressures and fluxes.
/// \param[out] transport_src The transport source terms. They are to be interpreted depending on sign:
/// (+) positive inflow of first (water) phase (surface volume),
/// (-) negative total outflow of both phases (reservoir volume).
void computeTransportSource(const BlackoilPropertiesInterface& props,
const Wells* wells,
const WellState& well_state,
std::vector<double>& transport_src)
{
int nc = props.numCells();
transport_src.clear();
transport_src.resize(nc, 0.0);
// Well contributions.
if (wells) {
const int nw = wells->number_of_wells;
const int np = wells->number_of_phases;
if (np != 2) {
THROW("computeTransportSource() requires a 2 phase case.");
}
std::vector<double> A(np*np);
for (int w = 0; w < nw; ++w) {
const double* comp_frac = wells->comp_frac + np*w;
for (int perf = wells->well_connpos[w]; perf < wells->well_connpos[w + 1]; ++perf) {
const int perf_cell = wells->well_cells[perf];
double perf_rate = well_state.perfRates()[perf];
if (perf_rate > 0.0) {
// perf_rate is a total inflow reservoir rate, we want a surface water rate.
if (wells->type[w] != INJECTOR) {
std::cout << "**** Warning: crossflow in well "
<< w << " perf " << perf - wells->well_connpos[w]
<< " ignored. Reservoir rate was "
<< perf_rate/Opm::unit::day << " m^3/day." << std::endl;
perf_rate = 0.0;
} else {
ASSERT(std::fabs(comp_frac[0] + comp_frac[1] - 1.0) < 1e-6);
perf_rate *= comp_frac[0]; // Water reservoir volume rate.
props.matrix(1, &well_state.perfPress()[perf], comp_frac, &perf_cell, &A[0], 0);
perf_rate *= A[0]; // Water surface volume rate.
}
}
transport_src[perf_cell] += perf_rate;
}
}
}
}
} // namespace Opm