opm-simulators/opm/models/discretefracture/discretefracturelocalresidual.hh

160 lines
5.9 KiB
C++
Raw Normal View History

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::DiscreteFractureLocalResidual
*/
#ifndef EWOMS_DISCRETE_FRACTURE_LOCAL_RESIDUAL_BASE_HH
#define EWOMS_DISCRETE_FRACTURE_LOCAL_RESIDUAL_BASE_HH
#include <opm/models/immiscible/immisciblelocalresidual.hh>
namespace Opm {
/*!
* \ingroup DiscreteFractureModel
*
* \brief Calculates the local residual of the discrete fracture
* immiscible multi-phase model.
*/
template <class TypeTag>
class DiscreteFractureLocalResidual : public ImmiscibleLocalResidual<TypeTag>
{
2020-06-10 06:49:42 -05:00
using ParentType = ImmiscibleLocalResidual<TypeTag>;
2020-06-10 06:49:42 -05:00
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
using Indices = GetPropType<TypeTag, Properties::Indices>;
using EqVector = GetPropType<TypeTag, Properties::EqVector>;
using RateVector = GetPropType<TypeTag, Properties::RateVector>;
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
enum { conti0EqIdx = Indices::conti0EqIdx };
enum { numPhases = getPropValue<TypeTag, Properties::NumPhases>() };
enum { enableEnergy = getPropValue<TypeTag, Properties::EnableEnergy>() };
2020-06-10 06:49:42 -05:00
using EnergyModule = Opm::EnergyModule<TypeTag, enableEnergy>;
public:
/*!
* \brief Adds the amount all conservation quantities (e.g. phase
* mass) within a single fluid phase
*
* \copydetails Doxygen::storageParam
* \copydetails Doxygen::dofCtxParams
* \copydetails Doxygen::phaseIdxParam
*/
void addPhaseStorage(EqVector& storage,
const ElementContext& elemCtx,
unsigned dofIdx,
unsigned timeIdx,
unsigned phaseIdx) const
{
EqVector phaseStorage(0.0);
ParentType::addPhaseStorage(phaseStorage, elemCtx, dofIdx, timeIdx, phaseIdx);
const auto& problem = elemCtx.problem();
const auto& fractureMapper = problem.fractureMapper();
unsigned globalIdx = elemCtx.globalSpaceIndex(dofIdx, timeIdx);
if (!fractureMapper.isFractureVertex(globalIdx)) {
// don't do anything in addition to the immiscible model for degrees of
// freedom that do not feature fractures
storage += phaseStorage;
return;
}
const auto& intQuants = elemCtx.intensiveQuantities(dofIdx, timeIdx);
const auto& scv = elemCtx.stencil(timeIdx).subControlVolume(dofIdx);
// reduce the matrix storage by the fracture volume
phaseStorage *= 1 - intQuants.fractureVolume()/scv.volume();
// add the storage term inside the fractures
const auto& fsFracture = intQuants.fractureFluidState();
phaseStorage[conti0EqIdx + phaseIdx] +=
intQuants.fracturePorosity()*
fsFracture.saturation(phaseIdx) *
fsFracture.density(phaseIdx) *
intQuants.fractureVolume()/scv.volume();
EnergyModule::addFracturePhaseStorage(phaseStorage, intQuants, scv,
phaseIdx);
// add the result to the overall storage term
storage += phaseStorage;
}
/*!
* \copydoc FvBaseLocalResidual::computeFlux
*/
void computeFlux(RateVector& flux,
const ElementContext& elemCtx,
unsigned scvfIdx,
unsigned timeIdx) const
{
ParentType::computeFlux(flux, elemCtx, scvfIdx, timeIdx);
const auto& extQuants = elemCtx.extensiveQuantities(scvfIdx, timeIdx);
unsigned i = extQuants.interiorIndex();
unsigned j = extQuants.exteriorIndex();
unsigned I = elemCtx.globalSpaceIndex(i, timeIdx);
unsigned J = elemCtx.globalSpaceIndex(j, timeIdx);
const auto& fractureMapper = elemCtx.problem().fractureMapper();
if (!fractureMapper.isFractureEdge(I, J))
// do nothing if the edge from i to j is not part of a
// fracture
return;
const auto& scvf = elemCtx.stencil(timeIdx).interiorFace(scvfIdx);
Scalar scvfArea = scvf.area();
// advective mass fluxes of all phases
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!elemCtx.model().phaseIsConsidered(phaseIdx))
continue;
// reduce the matrix mass flux by the width of the scv
// face that is occupied by the fracture. As usual, the
// fracture is shared between two SCVs, so the its width
// needs to be divided by two.
flux[conti0EqIdx + phaseIdx] *=
1 - extQuants.fractureWidth() / (2 * scvfArea);
// intensive quantities of the upstream and the downstream DOFs
unsigned upIdx = static_cast<unsigned>(extQuants.upstreamIndex(phaseIdx));
const auto& up = elemCtx.intensiveQuantities(upIdx, timeIdx);
flux[conti0EqIdx + phaseIdx] +=
extQuants.fractureVolumeFlux(phaseIdx) * up.fractureFluidState().density(phaseIdx);
}
EnergyModule::handleFractureFlux(flux, elemCtx, scvfIdx, timeIdx);
}
};
} // namespace Opm
#endif