opm-simulators/opm/autodiff/VFPProdProperties.cpp

281 lines
9.3 KiB
C++
Raw Normal View History

2015-08-11 02:47:06 -05:00
/*
Copyright 2015 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include "config.h"
#include <opm/autodiff/VFPProdProperties.hpp>
#include <opm/parser/eclipse/EclipseState/Tables/VFPProdTable.hpp>
#include <opm/core/props/BlackoilPhases.hpp>
#include <opm/core/utility/ErrorMacros.hpp>
#include <opm/autodiff/AutoDiffHelpers.hpp>
2015-08-11 02:47:06 -05:00
2015-08-11 03:24:55 -05:00
#include <opm/autodiff/VFPHelpers.hpp>
2015-08-11 02:47:06 -05:00
2015-08-11 03:24:55 -05:00
namespace Opm {
2015-08-11 02:47:06 -05:00
2015-08-11 03:24:55 -05:00
VFPProdProperties::VFPProdProperties() {
}
VFPProdProperties::VFPProdProperties(const VFPProdTable* table){
m_tables[table->getTableNum()] = table;
}
VFPProdProperties::VFPProdProperties(const std::map<int, VFPProdTable>& tables) {
for (const auto& table : tables) {
2015-08-11 03:24:55 -05:00
m_tables[table.first] = &table.second;
}
}
2015-08-11 03:24:55 -05:00
VFPProdProperties::ADB VFPProdProperties::bhp(const std::vector<int>& table_id,
const Wells& wells,
const ADB& qs,
const ADB& thp,
const ADB& alq) const {
const int np = wells.number_of_phases;
const int nw = wells.number_of_wells;
//Short-hands for water / oil / gas phases
//TODO enable support for two-phase.
assert(np == 3);
const ADB& w = subset(qs, Span(nw, 1, BlackoilPhases::Aqua*nw));
const ADB& o = subset(qs, Span(nw, 1, BlackoilPhases::Liquid*nw));
const ADB& g = subset(qs, Span(nw, 1, BlackoilPhases::Vapour*nw));
return bhp(table_id, w, o, g, thp, alq);
}
2015-08-11 02:47:06 -05:00
VFPProdProperties::ADB VFPProdProperties::bhp(const std::vector<int>& table_id,
const ADB& aqua,
const ADB& liquid,
const ADB& vapour,
const ADB& thp,
const ADB& alq) const {
const int nw = thp.size();
std::vector<int> block_pattern = detail::commonBlockPattern(aqua, liquid, vapour, thp, alq);
assert(static_cast<int>(table_id.size()) == nw);
assert(aqua.size() == nw);
assert(liquid.size() == nw);
assert(vapour.size() == nw);
assert(thp.size() == nw);
assert(alq.size() == nw);
//Allocate data for bhp's and partial derivatives
ADB::V value = ADB::V::Zero(nw);
ADB::V dthp = ADB::V::Zero(nw);
ADB::V dwfr = ADB::V::Zero(nw);
ADB::V dgfr = ADB::V::Zero(nw);
ADB::V dalq = ADB::V::Zero(nw);
ADB::V dflo = ADB::V::Zero(nw);
//Get the table for each well
std::vector<const VFPProdTable*> well_tables(nw, NULL);
for (int i=0; i<nw; ++i) {
if (table_id[i] >= 0) {
well_tables[i] = detail::getTable(m_tables, table_id[i]);
2015-08-11 02:47:06 -05:00
}
}
//Get the right FLO/GFR/WFR variable for each well as a single ADB
const ADB flo = detail::gather_vars<VFPProdTable::FLO_TYPE>(well_tables, aqua, liquid, vapour);
const ADB wfr = detail::gather_vars<VFPProdTable::WFR_TYPE>(well_tables, aqua, liquid, vapour);
const ADB gfr = detail::gather_vars<VFPProdTable::GFR_TYPE>(well_tables, aqua, liquid, vapour);
//Compute the BHP for each well independently
for (int i=0; i<nw; ++i) {
const VFPProdTable* table = well_tables[i];
if (table != NULL) {
//First, find the values to interpolate between
2015-08-11 03:24:55 -05:00
auto flo_i = detail::findInterpData(flo.value()[i], table->getFloAxis());
auto thp_i = detail::findInterpData(thp.value()[i], table->getTHPAxis());
auto wfr_i = detail::findInterpData(wfr.value()[i], table->getWFRAxis());
auto gfr_i = detail::findInterpData(gfr.value()[i], table->getGFRAxis());
auto alq_i = detail::findInterpData(alq.value()[i], table->getALQAxis());
2015-08-11 02:47:06 -05:00
2015-08-19 01:07:51 -05:00
detail::VFPEvaluation bhp_val = detail::interpolate(table->getTable(), flo_i, thp_i, wfr_i, gfr_i, alq_i);
2015-08-11 02:47:06 -05:00
/*
static const int N=40;
std::cout << "bhp=" << bhp_val.value << ";" << std::endl;
std::cout << "flo=" << flo.value()[i] << ";" << std::endl;
std::cout << "thp=" << thp.value()[i] << ";" << std::endl;
std::cout << "wfr=" << wfr.value()[i] << ";" << std::endl;
std::cout << "gfr=" << gfr.value()[i] << ";" << std::endl;
std::cout << "alq=" << alq.value()[i] << ";" << std::endl;
std::cout << "bhp_vfp=[" << std::endl;
for (int j=0; j<N; ++j) {
const double start = table->getFloAxis().front();
const double end = table->getFloAxis().back();
const double dist = end - start;
double flo_d = start + (j/static_cast<double>(N-1)) * dist;
auto flo_i = detail::findInterpData(flo_d, table->getFloAxis());
2015-08-19 01:07:51 -05:00
detail::VFPEvaluation bhp_val = detail::interpolate(table->getTable(), flo_i, thp_i, wfr_i, gfr_i, alq_i);
std::cout << bhp_val.value << ",";
}
std::cout << "];" << std::endl;
std::cout << "flo_vfp=[" << std::endl;
for (int j=0; j<N; ++j) {
const double start = table->getFloAxis().front();
const double end = table->getFloAxis().back();
const double dist = end - start;
double flo_d = start + (j/static_cast<double>(N-1)) * dist;
std::cout << flo_d << ",";
}
std::cout << "];" << std::endl;
*/
2015-08-11 02:47:06 -05:00
value[i] = bhp_val.value;
dthp[i] = bhp_val.dthp;
dwfr[i] = bhp_val.dwfr;
dgfr[i] = bhp_val.dgfr;
dalq[i] = bhp_val.dalq;
dflo[i] = bhp_val.dflo;
}
else {
value[i] = -1e100; //Signal that this value has not been calculated properly, due to "missing" table
}
}
//Create diagonal matrices from ADB::Vs
ADB::M dthp_diag = spdiag(dthp);
ADB::M dwfr_diag = spdiag(dwfr);
ADB::M dgfr_diag = spdiag(dgfr);
ADB::M dalq_diag = spdiag(dalq);
ADB::M dflo_diag = spdiag(dflo);
//Calculate the Jacobians
const int num_blocks = block_pattern.size();
std::vector<ADB::M> jacs(num_blocks);
for (int block = 0; block < num_blocks; ++block) {
//Could have used fastSparseProduct and temporary variables
//but may not save too much on that.
jacs[block] = ADB::M(nw, block_pattern[block]);
if (!thp.derivative().empty()) {
jacs[block] += dthp_diag * thp.derivative()[block];
}
if (!wfr.derivative().empty()) {
jacs[block] += dwfr_diag * wfr.derivative()[block];
}
if (!gfr.derivative().empty()) {
jacs[block] += dgfr_diag * gfr.derivative()[block];
}
if (!alq.derivative().empty()) {
jacs[block] += dalq_diag * alq.derivative()[block];
}
if (!flo.derivative().empty()) {
jacs[block] -= dflo_diag * flo.derivative()[block];
2015-08-11 02:47:06 -05:00
}
}
ADB retval = ADB::function(std::move(value), std::move(jacs));
return retval;
}
2015-08-11 03:24:55 -05:00
2015-08-11 05:21:06 -05:00
double VFPProdProperties::bhp(int table_id,
2015-08-11 02:47:06 -05:00
const double& aqua,
const double& liquid,
const double& vapour,
const double& thp,
const double& alq) const {
const VFPProdTable* table = detail::getTable(m_tables, table_id);
2015-08-11 02:47:06 -05:00
2015-08-19 01:07:51 -05:00
detail::VFPEvaluation retval = detail::bhp(table, aqua, liquid, vapour, thp, alq);
2015-08-11 05:21:06 -05:00
return retval.value;
2015-08-11 02:47:06 -05:00
}
2015-08-11 03:24:55 -05:00
2015-08-11 02:47:06 -05:00
double VFPProdProperties::thp(int table_id,
const double& aqua,
const double& liquid,
const double& vapour,
const double& bhp,
const double& alq) const {
const VFPProdTable* table = detail::getTable(m_tables, table_id);
2015-08-11 02:47:06 -05:00
const VFPProdTable::array_type& data = table->getTable();
//Find interpolation variables
2015-08-11 03:24:55 -05:00
double flo = detail::getFlo(aqua, liquid, vapour, table->getFloType());
double wfr = detail::getWFR(aqua, liquid, vapour, table->getWFRType());
double gfr = detail::getGFR(aqua, liquid, vapour, table->getGFRType());
2015-08-11 02:47:06 -05:00
const std::vector<double> thp_array = table->getTHPAxis();
int nthp = thp_array.size();
/**
* Find the function bhp_array(thp) by creating a 1D view of the data
* by interpolating for every value of thp. This might be somewhat
* expensive, but let us assome that nthp is small
*/
2015-08-11 03:24:55 -05:00
auto flo_i = detail::findInterpData(flo, table->getFloAxis());
auto wfr_i = detail::findInterpData(wfr, table->getWFRAxis());
auto gfr_i = detail::findInterpData(gfr, table->getGFRAxis());
auto alq_i = detail::findInterpData(alq, table->getALQAxis());
2015-08-11 02:47:06 -05:00
std::vector<double> bhp_array(nthp);
for (int i=0; i<nthp; ++i) {
2015-08-11 03:24:55 -05:00
auto thp_i = detail::findInterpData(thp_array[i], thp_array);
bhp_array[i] = detail::interpolate(data, flo_i, thp_i, wfr_i, gfr_i, alq_i).value;
2015-08-11 02:47:06 -05:00
}
double thp = detail::findTHP(bhp_array, thp_array, bhp);
2015-08-11 02:47:06 -05:00
return thp;
}
2015-08-11 03:24:55 -05:00
const VFPProdTable* VFPProdProperties::getTable(const int table_id) const {
return detail::getTable(m_tables, table_id);
}
2015-08-11 02:47:06 -05:00
}