2024-09-11 07:35:05 -05:00
|
|
|
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
|
|
// vi: set et ts=4 sw=4 sts=4:
|
|
|
|
/*
|
|
|
|
Copyright 2024 SINTEF Digital
|
|
|
|
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
|
|
it under the terms of the GNU General Public License as published by
|
|
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
|
|
(at your option) any later version.
|
|
|
|
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
|
|
|
|
Consult the COPYING file in the top-level source directory of this
|
|
|
|
module for the precise wording of the license and the list of
|
|
|
|
copyright holders.
|
|
|
|
*/
|
|
|
|
/*!
|
|
|
|
* \file
|
|
|
|
*
|
|
|
|
* \copydoc Opm::FlowProblemComp
|
|
|
|
*/
|
|
|
|
#ifndef OPM_FLOW_PROBLEM_COMP_HPP
|
|
|
|
#define OPM_FLOW_PROBLEM_COMP_HPP
|
|
|
|
|
|
|
|
|
|
|
|
#include <opm/simulators/flow/FlowProblem.hpp>
|
|
|
|
#include <opm/material/fluidstates/CompositionalFluidState.hpp>
|
|
|
|
|
|
|
|
#include <opm/material/thermal/EclThermalLawManager.hpp>
|
|
|
|
|
|
|
|
|
|
|
|
#include <algorithm>
|
|
|
|
#include <functional>
|
|
|
|
#include <set>
|
|
|
|
#include <string>
|
|
|
|
#include <vector>
|
|
|
|
|
|
|
|
namespace Opm {
|
|
|
|
|
|
|
|
/*!
|
|
|
|
* \ingroup CompositionalSimulator
|
|
|
|
*
|
|
|
|
* \brief This problem simulates an input file given in the data format used by the
|
|
|
|
* commercial ECLiPSE simulator.
|
|
|
|
*/
|
|
|
|
template <class TypeTag>
|
|
|
|
class FlowProblemComp : public FlowProblem<TypeTag>
|
|
|
|
{
|
|
|
|
// TODO: the naming of the Types will be adjusted
|
|
|
|
using FlowProblemType = FlowProblem<TypeTag>;
|
|
|
|
|
|
|
|
using typename FlowProblemType::Scalar;
|
|
|
|
using typename FlowProblemType::Simulator;
|
|
|
|
using typename FlowProblemType::GridView;
|
|
|
|
using typename FlowProblemType::FluidSystem;
|
|
|
|
using typename FlowProblemType::Vanguard;
|
|
|
|
|
|
|
|
// might not be needed
|
|
|
|
using FlowProblemType::dim;
|
|
|
|
using FlowProblemType::dimWorld;
|
|
|
|
|
|
|
|
using FlowProblemType::numPhases;
|
|
|
|
using FlowProblemType::numComponents;
|
|
|
|
|
|
|
|
using FlowProblemType::gasPhaseIdx;
|
|
|
|
using FlowProblemType::oilPhaseIdx;
|
|
|
|
using FlowProblemType::waterPhaseIdx;
|
|
|
|
|
|
|
|
using typename FlowProblemType::Indices;
|
|
|
|
using typename FlowProblemType::PrimaryVariables;
|
|
|
|
using BoundaryRateVector = GetPropType<TypeTag, Properties::BoundaryRateVector>;
|
|
|
|
using typename FlowProblemType::Evaluation;
|
|
|
|
using typename FlowProblemType::MaterialLaw;
|
|
|
|
using typename FlowProblemType::RateVector;
|
|
|
|
|
|
|
|
using InitialFluidState = CompositionalFluidState<Scalar, FluidSystem>;
|
|
|
|
|
|
|
|
public:
|
|
|
|
using FlowProblemType::porosity;
|
|
|
|
using FlowProblemType::pvtRegionIndex;
|
|
|
|
|
|
|
|
/*!
|
|
|
|
* \copydoc FvBaseProblem::registerParameters
|
|
|
|
*/
|
|
|
|
static void registerParameters()
|
|
|
|
{
|
|
|
|
FlowProblemType::registerParameters();
|
2024-10-01 08:43:08 -05:00
|
|
|
|
|
|
|
// tighter tolerance is needed for compositional modeling here
|
|
|
|
Parameters::SetDefault<Parameters::NewtonTolerance<Scalar>>(1e-7);
|
2024-09-11 07:35:05 -05:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
* \copydoc Doxygen::defaultProblemConstructor
|
|
|
|
*/
|
|
|
|
explicit FlowProblemComp(Simulator& simulator)
|
|
|
|
: FlowProblemType(simulator)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
* \copydoc FvBaseProblem::finishInit
|
|
|
|
*/
|
|
|
|
void finishInit()
|
|
|
|
{
|
|
|
|
// TODO: there should be room to remove duplication for this function,
|
|
|
|
// but there is relatively complicated logic in the function calls in this function
|
|
|
|
// some refactoring is needed for this function
|
|
|
|
FlowProblemType::finishInit();
|
|
|
|
|
|
|
|
auto& simulator = this->simulator();
|
|
|
|
|
|
|
|
auto finishTransmissibilities = [updated = false, this]() mutable {
|
|
|
|
if (updated) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
this->transmissibilities_.finishInit(
|
|
|
|
[&vg = this->simulator().vanguard()](const unsigned int it) { return vg.gridIdxToEquilGridIdx(it); });
|
|
|
|
updated = true;
|
|
|
|
};
|
|
|
|
|
|
|
|
finishTransmissibilities();
|
|
|
|
|
|
|
|
const auto& eclState = simulator.vanguard().eclState();
|
|
|
|
const auto& schedule = simulator.vanguard().schedule();
|
|
|
|
|
|
|
|
// Set the start time of the simulation
|
|
|
|
simulator.setStartTime(schedule.getStartTime());
|
|
|
|
simulator.setEndTime(schedule.simTime(schedule.size() - 1));
|
|
|
|
|
|
|
|
// We want the episode index to be the same as the report step index to make
|
|
|
|
// things simpler, so we have to set the episode index to -1 because it is
|
|
|
|
// incremented by endEpisode(). The size of the initial time step and
|
|
|
|
// length of the initial episode is set to zero for the same reason.
|
|
|
|
simulator.setEpisodeIndex(-1);
|
|
|
|
simulator.setEpisodeLength(0.0);
|
|
|
|
|
|
|
|
// the "NOGRAV" keyword from Frontsim or setting the EnableGravity to false
|
|
|
|
// disables gravity, else the standard value of the gravity constant at sea level
|
|
|
|
// on earth is used
|
|
|
|
this->gravity_ = 0.0;
|
|
|
|
if (Parameters::Get<Parameters::EnableGravity>())
|
|
|
|
this->gravity_[dim - 1] = 9.80665;
|
|
|
|
if (!eclState.getInitConfig().hasGravity())
|
|
|
|
this->gravity_[dim - 1] = 0.0;
|
|
|
|
|
|
|
|
if (this->enableTuning_) {
|
|
|
|
// if support for the TUNING keyword is enabled, we get the initial time
|
|
|
|
// steping parameters from it instead of from command line parameters
|
|
|
|
const auto& tuning = schedule[0].tuning();
|
|
|
|
this->initialTimeStepSize_ = tuning.TSINIT.has_value() ? tuning.TSINIT.value() : -1.0;
|
|
|
|
this->maxTimeStepAfterWellEvent_ = tuning.TMAXWC;
|
|
|
|
}
|
|
|
|
|
|
|
|
this->initFluidSystem_();
|
|
|
|
|
|
|
|
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)
|
|
|
|
&& FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
|
|
|
|
this->maxOilSaturation_.resize(this->model().numGridDof(), 0.0);
|
|
|
|
}
|
|
|
|
|
|
|
|
this->readRockParameters_(simulator.vanguard().cellCenterDepths(), [&simulator](const unsigned idx) {
|
|
|
|
std::array<int, dim> coords;
|
|
|
|
simulator.vanguard().cartesianCoordinate(idx, coords);
|
|
|
|
for (auto& c : coords) {
|
|
|
|
++c;
|
|
|
|
}
|
|
|
|
return coords;
|
|
|
|
});
|
|
|
|
FlowProblemType::readMaterialParameters_();
|
|
|
|
FlowProblemType::readThermalParameters_();
|
|
|
|
|
|
|
|
const auto& initconfig = eclState.getInitConfig();
|
|
|
|
if (initconfig.restartRequested())
|
|
|
|
readEclRestartSolution_();
|
|
|
|
else
|
|
|
|
this->readInitialCondition_();
|
|
|
|
|
|
|
|
FlowProblemType::updatePffDofData_();
|
|
|
|
|
|
|
|
if constexpr (getPropValue<TypeTag, Properties::EnablePolymer>()) {
|
|
|
|
const auto& vanguard = this->simulator().vanguard();
|
|
|
|
const auto& gridView = vanguard.gridView();
|
|
|
|
int numElements = gridView.size(/*codim=*/0);
|
|
|
|
this->polymer_.maxAdsorption.resize(numElements, 0.0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* readBoundaryConditions_();
|
|
|
|
|
|
|
|
// compute and set eq weights based on initial b values
|
|
|
|
computeAndSetEqWeights_();
|
|
|
|
|
|
|
|
if (enableDriftCompensation_) {
|
|
|
|
drift_.resize(this->model().numGridDof());
|
|
|
|
drift_ = 0.0;
|
|
|
|
} */
|
|
|
|
|
|
|
|
// TODO: check wether the following can work with compostional
|
|
|
|
if (enableVtkOutput_ && eclState.getIOConfig().initOnly()) {
|
|
|
|
simulator.setTimeStepSize(0.0);
|
|
|
|
FlowProblemType::writeOutput(true);
|
|
|
|
}
|
|
|
|
|
|
|
|
// after finishing the initialization and writing the initial solution, we move
|
|
|
|
// to the first "real" episode/report step
|
|
|
|
// for restart the episode index and start is already set
|
|
|
|
if (!initconfig.restartRequested()) {
|
|
|
|
simulator.startNextEpisode(schedule.seconds(1));
|
|
|
|
simulator.setEpisodeIndex(0);
|
|
|
|
simulator.setTimeStepIndex(0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
* \copydoc FvBaseProblem::boundary
|
|
|
|
*
|
|
|
|
* Reservoir simulation uses no-flow conditions as default for all boundaries.
|
|
|
|
*/
|
|
|
|
template <class Context>
|
|
|
|
void boundary(BoundaryRateVector& values,
|
|
|
|
const Context& context,
|
|
|
|
unsigned spaceIdx,
|
|
|
|
unsigned /* timeIdx */) const
|
|
|
|
{
|
|
|
|
OPM_TIMEBLOCK_LOCAL(eclProblemBoundary);
|
|
|
|
if (!context.intersection(spaceIdx).boundary())
|
|
|
|
return;
|
|
|
|
|
|
|
|
values.setNoFlow();
|
|
|
|
|
|
|
|
if (this->nonTrivialBoundaryConditions()) {
|
|
|
|
throw std::logic_error("boundary condition is not supported by compostional modeling yet");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
* \copydoc FvBaseProblem::initial
|
|
|
|
*
|
|
|
|
* The reservoir problem uses a constant boundary condition for
|
|
|
|
* the whole domain.
|
|
|
|
*/
|
|
|
|
template <class Context>
|
|
|
|
void initial(PrimaryVariables& values, const Context& context, unsigned spaceIdx, unsigned timeIdx) const
|
|
|
|
{
|
|
|
|
const unsigned globalDofIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
|
|
|
|
const auto& initial_fs = initialFluidStates_[globalDofIdx];
|
|
|
|
Opm::CompositionalFluidState<Evaluation, FluidSystem> fs;
|
|
|
|
using ComponentVector = Dune::FieldVector<Evaluation, numComponents>;
|
|
|
|
for (unsigned p = 0; p < numPhases; ++p) { // TODO: assuming the phaseidx continuous
|
|
|
|
ComponentVector evals;
|
|
|
|
auto& last_eval = evals[numComponents - 1];
|
|
|
|
last_eval = 1.;
|
|
|
|
for (unsigned c = 0; c < numComponents - 1; ++c) {
|
|
|
|
const auto val = initial_fs.moleFraction(p, c);
|
|
|
|
const Evaluation eval = Evaluation::createVariable(val, c + 1);
|
|
|
|
evals[c] = eval;
|
|
|
|
last_eval -= eval;
|
|
|
|
}
|
|
|
|
for (unsigned c = 0; c < numComponents; ++c) {
|
|
|
|
fs.setMoleFraction(p, c, evals[c]);
|
|
|
|
}
|
|
|
|
|
|
|
|
// pressure
|
|
|
|
const auto p_val = initial_fs.pressure(p);
|
|
|
|
fs.setPressure(p, Evaluation::createVariable(p_val, 0));
|
|
|
|
|
|
|
|
const auto sat_val = initial_fs.saturation(p);
|
|
|
|
fs.setSaturation(p, sat_val);
|
|
|
|
|
|
|
|
const auto temp_val = initial_fs.temperature(p);
|
|
|
|
fs.setTemperature(temp_val);
|
|
|
|
}
|
|
|
|
|
|
|
|
{
|
|
|
|
typename FluidSystem::template ParameterCache<Evaluation> paramCache;
|
|
|
|
paramCache.updatePhase(fs, FluidSystem::oilPhaseIdx);
|
|
|
|
paramCache.updatePhase(fs, FluidSystem::gasPhaseIdx);
|
|
|
|
fs.setDensity(FluidSystem::oilPhaseIdx, FluidSystem::density(fs, paramCache, FluidSystem::oilPhaseIdx));
|
|
|
|
fs.setDensity(FluidSystem::gasPhaseIdx, FluidSystem::density(fs, paramCache, FluidSystem::gasPhaseIdx));
|
|
|
|
fs.setViscosity(FluidSystem::oilPhaseIdx, FluidSystem::viscosity(fs, paramCache, FluidSystem::oilPhaseIdx));
|
|
|
|
fs.setViscosity(FluidSystem::gasPhaseIdx, FluidSystem::viscosity(fs, paramCache, FluidSystem::gasPhaseIdx));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Set initial K and L
|
|
|
|
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
|
|
|
|
const Evaluation Ktmp = fs.wilsonK_(compIdx);
|
|
|
|
fs.setKvalue(compIdx, Ktmp);
|
|
|
|
}
|
|
|
|
|
|
|
|
const Evaluation& Ltmp = -1.0;
|
|
|
|
fs.setLvalue(Ltmp);
|
|
|
|
|
|
|
|
values.assignNaive(fs);
|
|
|
|
}
|
|
|
|
|
2024-09-17 00:52:10 -05:00
|
|
|
void addToSourceDense(RateVector&, unsigned, unsigned) const override
|
2024-09-11 07:35:05 -05:00
|
|
|
{
|
|
|
|
// we do nothing for now
|
|
|
|
}
|
|
|
|
|
|
|
|
const InitialFluidState& initialFluidState(unsigned globalDofIdx) const
|
|
|
|
{ return initialFluidStates_[globalDofIdx]; }
|
|
|
|
|
|
|
|
std::vector<InitialFluidState>& initialFluidStates()
|
|
|
|
{ return initialFluidStates_; }
|
|
|
|
|
|
|
|
const std::vector<InitialFluidState>& initialFluidStates() const
|
|
|
|
{ return initialFluidStates_; }
|
|
|
|
|
|
|
|
// TODO: do we need this one?
|
|
|
|
template<class Serializer>
|
|
|
|
void serializeOp(Serializer& serializer)
|
|
|
|
{
|
|
|
|
serializer(static_cast<FlowProblemType&>(*this));
|
|
|
|
}
|
|
|
|
protected:
|
|
|
|
|
|
|
|
void updateExplicitQuantities_(int /* episodeIdx*/, int /* timeStepSize */, bool /* first_step_after_restart */) override
|
|
|
|
{
|
|
|
|
// we do nothing here for now
|
|
|
|
}
|
|
|
|
|
2024-09-17 00:52:10 -05:00
|
|
|
void readEquilInitialCondition_() override
|
2024-09-11 07:35:05 -05:00
|
|
|
{
|
|
|
|
throw std::logic_error("Equilibration is not supported by compositional modeling yet");
|
|
|
|
}
|
|
|
|
|
|
|
|
void readEclRestartSolution_()
|
|
|
|
{
|
|
|
|
throw std::logic_error("Restarting is not supported by compositional modeling yet");
|
|
|
|
}
|
|
|
|
|
2024-09-17 00:52:10 -05:00
|
|
|
void readExplicitInitialCondition_() override
|
2024-09-11 07:35:05 -05:00
|
|
|
{
|
|
|
|
readExplicitInitialConditionCompositional_();
|
|
|
|
}
|
|
|
|
|
|
|
|
void readExplicitInitialConditionCompositional_()
|
|
|
|
{
|
|
|
|
const auto& simulator = this->simulator();
|
|
|
|
const auto& vanguard = simulator.vanguard();
|
|
|
|
const auto& eclState = vanguard.eclState();
|
|
|
|
const auto& fp = eclState.fieldProps();
|
|
|
|
const bool has_pressure = fp.has_double("PRESSURE");
|
2024-09-23 04:51:53 -05:00
|
|
|
if (!has_pressure)
|
|
|
|
throw std::runtime_error("The ECL input file requires the presence of the PRESSURE "
|
|
|
|
"keyword if the model is initialized explicitly");
|
|
|
|
|
|
|
|
const bool has_xmf = fp.has_double("XMF");
|
|
|
|
const bool has_ymf = fp.has_double("YMF");
|
|
|
|
const bool has_zmf = fp.has_double("ZMF");
|
2024-10-03 09:06:23 -05:00
|
|
|
if ( !has_zmf && !(has_xmf && has_ymf) ) {
|
2024-09-23 04:51:53 -05:00
|
|
|
throw std::runtime_error("The ECL input file requires the presence of ZMF or XMF and YMF "
|
|
|
|
"keyword if the model is initialized explicitly");
|
|
|
|
}
|
|
|
|
|
|
|
|
if (has_zmf && (has_xmf || has_ymf)) {
|
|
|
|
throw std::runtime_error("The ECL input file can not handle explicit initialization "
|
|
|
|
"with both ZMF and XMF or YMF");
|
|
|
|
}
|
|
|
|
|
|
|
|
if (has_xmf != has_ymf) {
|
|
|
|
throw std::runtime_error("The ECL input file needs XMF and YMF combined to do the explicit "
|
|
|
|
"initializtion when using XMF or YMF");
|
|
|
|
}
|
|
|
|
|
|
|
|
const bool has_temp = fp.has_double("TEMPI");
|
2024-09-11 07:35:05 -05:00
|
|
|
|
|
|
|
// const bool has_gas = fp.has_double("SGAS");
|
|
|
|
assert(fp.has_double("SGAS"));
|
|
|
|
|
|
|
|
std::size_t numDof = this->model().numGridDof();
|
|
|
|
|
|
|
|
initialFluidStates_.resize(numDof);
|
|
|
|
|
|
|
|
std::vector<double> waterSaturationData;
|
|
|
|
std::vector<double> gasSaturationData;
|
|
|
|
std::vector<double> soilData;
|
|
|
|
std::vector<double> pressureData;
|
|
|
|
std::vector<double> tempiData;
|
|
|
|
|
2024-09-23 04:51:53 -05:00
|
|
|
const bool water_active = FluidSystem::phaseIsActive(waterPhaseIdx);
|
|
|
|
const bool gas_active = FluidSystem::phaseIsActive(gasPhaseIdx);
|
|
|
|
const bool oil_active = FluidSystem::phaseIsActive(oilPhaseIdx);
|
|
|
|
|
|
|
|
if (water_active && Indices::numPhases > 1)
|
2024-09-11 07:35:05 -05:00
|
|
|
waterSaturationData = fp.get_double("SWAT");
|
|
|
|
else
|
|
|
|
waterSaturationData.resize(numDof);
|
|
|
|
|
|
|
|
pressureData = fp.get_double("PRESSURE");
|
|
|
|
|
|
|
|
if (has_temp) {
|
|
|
|
tempiData = fp.get_double("TEMPI");
|
|
|
|
} else {
|
|
|
|
; // TODO: throw?
|
|
|
|
}
|
|
|
|
|
2024-09-23 04:51:53 -05:00
|
|
|
if (gas_active) // && FluidSystem::phaseIsActive(oilPhaseIdx))
|
2024-09-11 07:35:05 -05:00
|
|
|
gasSaturationData = fp.get_double("SGAS");
|
|
|
|
else
|
|
|
|
gasSaturationData.resize(numDof);
|
|
|
|
|
|
|
|
for (std::size_t dofIdx = 0; dofIdx < numDof; ++dofIdx) {
|
|
|
|
auto& dofFluidState = initialFluidStates_[dofIdx];
|
|
|
|
// dofFluidState.setPvtRegionIndex(pvtRegionIndex(dofIdx));
|
|
|
|
|
|
|
|
Scalar temperatureLoc = tempiData[dofIdx];
|
|
|
|
assert(std::isfinite(temperatureLoc) && temperatureLoc > 0);
|
|
|
|
dofFluidState.setTemperature(temperatureLoc);
|
|
|
|
|
2024-09-23 04:51:53 -05:00
|
|
|
if (gas_active) {
|
|
|
|
dofFluidState.setSaturation(FluidSystem::gasPhaseIdx,
|
|
|
|
gasSaturationData[dofIdx]);
|
2024-09-11 07:35:05 -05:00
|
|
|
}
|
2024-09-23 04:51:53 -05:00
|
|
|
if (oil_active) {
|
2024-09-11 07:35:05 -05:00
|
|
|
dofFluidState.setSaturation(FluidSystem::oilPhaseIdx,
|
|
|
|
1.0
|
|
|
|
- waterSaturationData[dofIdx]
|
|
|
|
- gasSaturationData[dofIdx]);
|
|
|
|
}
|
|
|
|
|
|
|
|
//////
|
|
|
|
// set phase pressures
|
|
|
|
//////
|
|
|
|
const Scalar pressure = pressureData[dofIdx]; // oil pressure (or gas pressure for water-gas system or water pressure for single phase)
|
|
|
|
|
|
|
|
// TODO: zero capillary pressure for now
|
|
|
|
const std::array<Scalar, numPhases> pc = {0};
|
|
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
|
|
if (!FluidSystem::phaseIsActive(phaseIdx))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
if (Indices::oilEnabled)
|
|
|
|
dofFluidState.setPressure(phaseIdx, pressure + (pc[phaseIdx] - pc[oilPhaseIdx]));
|
|
|
|
else if (Indices::gasEnabled)
|
|
|
|
dofFluidState.setPressure(phaseIdx, pressure + (pc[phaseIdx] - pc[gasPhaseIdx]));
|
|
|
|
else if (Indices::waterEnabled)
|
2024-10-03 09:06:23 -05:00
|
|
|
// single (water) phase
|
2024-09-11 07:35:05 -05:00
|
|
|
dofFluidState.setPressure(phaseIdx, pressure);
|
|
|
|
}
|
|
|
|
|
2024-09-23 04:51:53 -05:00
|
|
|
if (has_xmf && has_ymf) {
|
|
|
|
const auto& xmfData = fp.get_double("XMF");
|
|
|
|
const auto& ymfData = fp.get_double("YMF");
|
|
|
|
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
|
|
|
|
const std::size_t data_idx = compIdx * numDof + dofIdx;
|
|
|
|
const Scalar xmf = xmfData[data_idx];
|
|
|
|
const Scalar ymf = ymfData[data_idx];
|
|
|
|
|
|
|
|
dofFluidState.setMoleFraction(FluidSystem::oilPhaseIdx, compIdx, xmf);
|
|
|
|
dofFluidState.setMoleFraction(FluidSystem::gasPhaseIdx, compIdx, ymf);
|
|
|
|
}
|
|
|
|
}
|
2024-09-11 07:35:05 -05:00
|
|
|
|
2024-09-23 04:51:53 -05:00
|
|
|
if (has_zmf) {
|
|
|
|
const auto& zmfData = fp.get_double("ZMF");
|
|
|
|
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
|
|
|
|
const std::size_t data_idx = compIdx * numDof + dofIdx;
|
|
|
|
const Scalar zmf = zmfData[data_idx];
|
|
|
|
if (gas_active) {
|
2024-10-03 09:06:23 -05:00
|
|
|
const auto ymf = (dofFluidState.saturation(FluidSystem::gasPhaseIdx) > 0.) ? zmf : Scalar{0};
|
|
|
|
dofFluidState.setMoleFraction(FluidSystem::gasPhaseIdx, compIdx, ymf);
|
2024-09-23 04:51:53 -05:00
|
|
|
}
|
|
|
|
if (oil_active) {
|
2024-10-03 09:06:23 -05:00
|
|
|
const auto xmf = (dofFluidState.saturation(FluidSystem::oilPhaseIdx) > 0.) ? zmf : Scalar{0};
|
|
|
|
dofFluidState.setMoleFraction(FluidSystem::oilPhaseIdx, compIdx, xmf);
|
2024-09-23 04:51:53 -05:00
|
|
|
}
|
|
|
|
}
|
2024-09-11 07:35:05 -05:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
|
|
|
|
void handleSolventBC(const BCProp::BCFace& /* bc */, RateVector& /* rate */) const override
|
|
|
|
{
|
|
|
|
throw std::logic_error("solvent is disabled for compositional modeling and you're trying to add solvent to BC");
|
|
|
|
}
|
|
|
|
|
|
|
|
void handlePolymerBC(const BCProp::BCFace& /* bc */, RateVector& /* rate */) const override
|
|
|
|
{
|
|
|
|
throw std::logic_error("polymer is disabled for compositional modeling and you're trying to add polymer to BC");
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<InitialFluidState> initialFluidStates_;
|
|
|
|
|
|
|
|
bool enableVtkOutput_;
|
|
|
|
};
|
|
|
|
|
|
|
|
} // namespace Opm
|
|
|
|
|
|
|
|
#endif // OPM_FLOW_PROBLEM_COMP_HPP
|