opm-simulators/opm/simulators/wells/WellInterfaceFluidSystem.cpp

1124 lines
47 KiB
C++
Raw Normal View History

/*
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
Copyright 2017 Statoil ASA.
Copyright 2018 IRIS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <opm/simulators/wells/WellInterfaceFluidSystem.hpp>
#include <opm/material/fluidsystems/BlackOilFluidSystem.hpp>
#include <opm/input/eclipse/Schedule/Well/WellTestState.hpp>
#include <opm/input/eclipse/Schedule/Schedule.hpp>
#include <opm/simulators/utils/DeferredLogger.hpp>
#include <opm/simulators/wells/RateConverter.hpp>
#include <opm/simulators/wells/ParallelWellInfo.hpp>
#include <opm/simulators/wells/WellGroupHelpers.hpp>
#include <opm/simulators/wells/WellState.hpp>
#include <opm/simulators/wells/SingleWellState.hpp>
2021-06-10 08:09:05 -05:00
#include <opm/simulators/wells/GroupState.hpp>
#include <opm/simulators/wells/TargetCalculator.hpp>
#include <cassert>
#include <cmath>
namespace Opm
{
template<class FluidSystem>
WellInterfaceFluidSystem<FluidSystem>::
WellInterfaceFluidSystem(const Well& well,
const ParallelWellInfo& parallel_well_info,
const int time_step,
const RateConverterType& rate_converter,
const int pvtRegionIdx,
const int num_components,
const int num_phases,
const int index_of_well,
const std::vector<PerforationData>& perf_data)
: WellInterfaceGeneric(well, parallel_well_info, time_step,
pvtRegionIdx, num_components, num_phases,
index_of_well, perf_data)
, rateConverter_(rate_converter)
{
}
template<typename FluidSystem>
void
WellInterfaceFluidSystem<FluidSystem>::
calculateReservoirRates(SingleWellState& ws) const
{
const int fipreg = 0; // not considering the region for now
const int np = number_of_phases_;
std::vector<double> surface_rates(np, 0.0);
for (int p = 0; p < np; ++p) {
surface_rates[p] = ws.surface_rates[p];
}
std::vector<double> voidage_rates(np, 0.0);
rateConverter_.calcReservoirVoidageRates(fipreg, pvtRegionIdx_, surface_rates, voidage_rates);
ws.reservoir_rates = voidage_rates;
}
template <typename FluidSystem>
Well::ProducerCMode
WellInterfaceFluidSystem<FluidSystem>::
activeProductionConstraint(const SingleWellState& ws,
const SummaryState& summaryState,
DeferredLogger& deferred_logger) const
{
const PhaseUsage& pu = this->phaseUsage();
const auto controls = this->well_ecl_.productionControls(summaryState);
const auto currentControl = ws.production_cmode;
if (controls.hasControl(Well::ProducerCMode::BHP) && currentControl != Well::ProducerCMode::BHP) {
const double bhp_limit = controls.bhp_limit;
double current_bhp = ws.bhp;
if (bhp_limit > current_bhp)
return Well::ProducerCMode::BHP;
}
if (controls.hasControl(Well::ProducerCMode::ORAT) && currentControl != Well::ProducerCMode::ORAT) {
double current_rate = -ws.surface_rates[pu.phase_pos[BlackoilPhases::Liquid]];
if (controls.oil_rate < current_rate)
return Well::ProducerCMode::ORAT;
}
if (controls.hasControl(Well::ProducerCMode::WRAT) && currentControl != Well::ProducerCMode::WRAT) {
double current_rate = -ws.surface_rates[pu.phase_pos[BlackoilPhases::Aqua]];
if (controls.water_rate < current_rate)
return Well::ProducerCMode::WRAT;
}
if (controls.hasControl(Well::ProducerCMode::GRAT) && currentControl != Well::ProducerCMode::GRAT) {
double current_rate = -ws.surface_rates[pu.phase_pos[BlackoilPhases::Vapour]];
if (controls.gas_rate < current_rate)
return Well::ProducerCMode::GRAT;
}
if (controls.hasControl(Well::ProducerCMode::LRAT) && currentControl != Well::ProducerCMode::LRAT) {
double current_rate = -ws.surface_rates[pu.phase_pos[BlackoilPhases::Liquid]];
current_rate -= ws.surface_rates[pu.phase_pos[BlackoilPhases::Aqua]];
if (controls.liquid_rate < current_rate)
return Well::ProducerCMode::LRAT;
}
if (controls.hasControl(Well::ProducerCMode::RESV) && currentControl != Well::ProducerCMode::RESV) {
double current_rate = 0.0;
if (pu.phase_used[BlackoilPhases::Aqua])
current_rate -= ws.reservoir_rates[pu.phase_pos[BlackoilPhases::Aqua]];
if (pu.phase_used[BlackoilPhases::Liquid])
current_rate -= ws.reservoir_rates[pu.phase_pos[BlackoilPhases::Liquid]];
if (pu.phase_used[BlackoilPhases::Vapour])
current_rate -= ws.reservoir_rates[pu.phase_pos[BlackoilPhases::Vapour]];
if (controls.prediction_mode && controls.resv_rate < current_rate)
return Well::ProducerCMode::RESV;
if (!controls.prediction_mode) {
const int fipreg = 0; // not considering the region for now
const int np = number_of_phases_;
std::vector<double> surface_rates(np, 0.0);
if (pu.phase_used[BlackoilPhases::Aqua])
surface_rates[pu.phase_pos[BlackoilPhases::Aqua]] = controls.water_rate;
if (pu.phase_used[BlackoilPhases::Liquid])
surface_rates[pu.phase_pos[BlackoilPhases::Liquid]] = controls.oil_rate;
if (pu.phase_used[BlackoilPhases::Vapour])
surface_rates[pu.phase_pos[BlackoilPhases::Vapour]] = controls.gas_rate;
std::vector<double> voidage_rates(np, 0.0);
rateConverter_.calcReservoirVoidageRates(fipreg, pvtRegionIdx_, surface_rates, voidage_rates);
double resv_rate = 0.0;
for (int p = 0; p < np; ++p)
resv_rate += voidage_rates[p];
if (resv_rate < current_rate)
return Well::ProducerCMode::RESV;
}
}
if (controls.hasControl(Well::ProducerCMode::THP) && currentControl != Well::ProducerCMode::THP) {
const auto& thp = getTHPConstraint(summaryState);
double current_thp = ws.thp;
if (thp > current_thp) {
bool rate_less_than_potential = true;
for (int p = 0; p < number_of_phases_; ++p) {
// Currently we use the well potentials here computed before the iterations.
// We may need to recompute the well potentials to get a more
// accurate check here.
rate_less_than_potential = rate_less_than_potential && (-ws.surface_rates[p]) <= ws.well_potentials[p];
}
if(!rate_less_than_potential) {
this->operability_status_.thp_limit_violated_but_not_switched = false;
return Well::ProducerCMode::THP;
} else {
this->operability_status_.thp_limit_violated_but_not_switched = true;
deferred_logger.debug("NOT_SWITCHING_TO_THP",
"The THP limit is violated for producer " +
this->name() +
". But the rate will increase if switched to THP. " +
"The well is therefore kept at " + Well::ProducerCMode2String(currentControl));
}
}
}
return currentControl;
}
template <typename FluidSystem>
Well::InjectorCMode
WellInterfaceFluidSystem<FluidSystem>::
activeInjectionConstraint(const SingleWellState& ws,
const SummaryState& summaryState,
DeferredLogger& deferred_logger) const
{
const PhaseUsage& pu = this->phaseUsage();
const auto controls = this->well_ecl_.injectionControls(summaryState);
const auto currentControl = ws.injection_cmode;
if (controls.hasControl(Well::InjectorCMode::BHP) && currentControl != Well::InjectorCMode::BHP)
{
const auto& bhp = controls.bhp_limit;
double current_bhp = ws.bhp;
if (bhp < current_bhp)
return Well::InjectorCMode::BHP;
}
if (controls.hasControl(Well::InjectorCMode::RATE) && currentControl != Well::InjectorCMode::RATE)
{
InjectorType injectorType = controls.injector_type;
double current_rate = 0.0;
switch (injectorType) {
case InjectorType::WATER:
{
current_rate = ws.surface_rates[ pu.phase_pos[BlackoilPhases::Aqua] ];
break;
}
case InjectorType::OIL:
{
current_rate = ws.surface_rates[ pu.phase_pos[BlackoilPhases::Liquid] ];
break;
}
case InjectorType::GAS:
{
current_rate = ws.surface_rates[ pu.phase_pos[BlackoilPhases::Vapour] ];
break;
}
default:
throw("Expected WATER, OIL or GAS as type for injectors " + this->well_ecl_.name());
}
if (controls.surface_rate < current_rate)
return Well::InjectorCMode::RATE;
}
if (controls.hasControl(Well::InjectorCMode::RESV) && currentControl != Well::InjectorCMode::RESV)
{
double current_rate = 0.0;
if( pu.phase_used[BlackoilPhases::Aqua] )
current_rate += ws.reservoir_rates[ pu.phase_pos[BlackoilPhases::Aqua] ];
if( pu.phase_used[BlackoilPhases::Liquid] )
current_rate += ws.reservoir_rates[ pu.phase_pos[BlackoilPhases::Liquid] ];
if( pu.phase_used[BlackoilPhases::Vapour] )
current_rate += ws.reservoir_rates[ pu.phase_pos[BlackoilPhases::Vapour] ];
if (controls.reservoir_rate < current_rate)
return Well::InjectorCMode::RESV;
}
if (controls.hasControl(Well::InjectorCMode::THP) && currentControl != Well::InjectorCMode::THP)
{
const auto& thp = getTHPConstraint(summaryState);
double current_thp = ws.thp;
if (thp < current_thp) {
bool rate_less_than_potential = true;
for (int p = 0; p < number_of_phases_; ++p) {
// Currently we use the well potentials here computed before the iterations.
// We may need to recompute the well potentials to get a more
// accurate check here.
rate_less_than_potential = rate_less_than_potential && (ws.surface_rates[p]) <= ws.well_potentials[p];
}
if(!rate_less_than_potential) {
this->operability_status_.thp_limit_violated_but_not_switched = false;
return Well::InjectorCMode::THP;
} else {
this->operability_status_.thp_limit_violated_but_not_switched = true;
deferred_logger.debug("NOT_SWITCHING_TO_THP",
"The THP limit is violated for injector " +
this->name() +
". But the rate will increase if switched to THP. " +
"The well is therefore kept at " + Well::InjectorCMode2String(currentControl));
}
}
}
return currentControl;
}
template <typename FluidSystem>
bool
WellInterfaceFluidSystem<FluidSystem>::
checkIndividualConstraints(SingleWellState& ws,
const SummaryState& summaryState,
DeferredLogger& deferred_logger) const
{
if (this->well_ecl_.isProducer()) {
auto new_cmode = this->activeProductionConstraint(ws, summaryState, deferred_logger);
if (new_cmode != ws.production_cmode) {
ws.production_cmode = new_cmode;
return true;
}
}
if (this->well_ecl_.isInjector()) {
auto new_cmode = this->activeInjectionConstraint(ws, summaryState, deferred_logger);
if (new_cmode != ws.injection_cmode) {
ws.injection_cmode = new_cmode;
return true;
}
}
return false;
}
template <typename FluidSystem>
std::pair<bool, double>
WellInterfaceFluidSystem<FluidSystem>::
checkGroupConstraintsInj(const Group& group,
const WellState& well_state,
const GroupState& group_state,
const double efficiencyFactor,
const Schedule& schedule,
const SummaryState& summaryState,
DeferredLogger& deferred_logger) const
{
// Translate injector type from control to Phase.
const auto& well_controls = this->well_ecl_.injectionControls(summaryState);
auto injectorType = well_controls.injector_type;
Phase injectionPhase;
switch (injectorType) {
case InjectorType::WATER:
{
injectionPhase = Phase::WATER;
break;
}
case InjectorType::OIL:
{
injectionPhase = Phase::OIL;
break;
}
case InjectorType::GAS:
{
injectionPhase = Phase::GAS;
break;
}
default:
throw("Expected WATER, OIL or GAS as type for injector " + name());
}
// Make conversion factors for RESV <-> surface rates.
std::vector<double> resv_coeff(phaseUsage().num_phases, 1.0);
rateConverter_.calcInjCoeff(0, pvtRegionIdx_, resv_coeff); // FIPNUM region 0 here, should use FIPNUM from WELSPECS.
const auto& ws = well_state.well(this->index_of_well_);
// Call check for the well's injection phase.
return WellGroupHelpers::checkGroupConstraintsInj(name(),
well_ecl_.groupName(),
group,
well_state,
group_state,
current_step_,
guide_rate_,
ws.surface_rates.data(),
injectionPhase,
phaseUsage(),
efficiencyFactor,
schedule,
summaryState,
resv_coeff,
deferred_logger);
}
template <typename FluidSystem>
std::pair<bool, double>
WellInterfaceFluidSystem<FluidSystem>::
checkGroupConstraintsProd(const Group& group,
const WellState& well_state,
const GroupState& group_state,
const double efficiencyFactor,
const Schedule& schedule,
const SummaryState& summaryState,
DeferredLogger& deferred_logger) const
{
// Make conversion factors for RESV <-> surface rates.
std::vector<double> resv_coeff(this->phaseUsage().num_phases, 1.0);
rateConverter_.calcCoeff(0, pvtRegionIdx_, resv_coeff); // FIPNUM region 0 here, should use FIPNUM from WELSPECS.
const auto& ws = well_state.well(this->index_of_well_);
return WellGroupHelpers::checkGroupConstraintsProd(name(),
well_ecl_.groupName(),
group,
well_state,
group_state,
current_step_,
guide_rate_,
ws.surface_rates.data(),
phaseUsage(),
efficiencyFactor,
schedule,
summaryState,
resv_coeff,
deferred_logger);
}
template <typename FluidSystem>
bool
WellInterfaceFluidSystem<FluidSystem>::
checkGroupConstraints(WellState& well_state,
const GroupState& group_state,
const Schedule& schedule,
const SummaryState& summaryState,
DeferredLogger& deferred_logger) const
{
const auto& well = well_ecl_;
const int well_index = index_of_well_;
auto& ws = well_state.well(well_index);
if (well.isInjector()) {
const auto currentControl = ws.injection_cmode;
if (currentControl != Well::InjectorCMode::GRUP) {
// This checks only the first encountered group limit,
// in theory there could be several, and then we should
// test all but the one currently applied. At that point,
// this if-statement should be removed and we should always
// check, skipping over only the single group parent whose
// control is the active one for the well (if any).
const auto& group = schedule.getGroup( well.groupName(), current_step_ );
const double efficiencyFactor = well.getEfficiencyFactor();
const std::pair<bool, double> group_constraint =
checkGroupConstraintsInj(group, well_state, group_state, efficiencyFactor,
schedule, summaryState, deferred_logger);
// If a group constraint was broken, we set the current well control to
// be GRUP.
if (group_constraint.first) {
ws.injection_cmode = Well::InjectorCMode::GRUP;
const int np = well_state.numPhases();
for (int p = 0; p<np; ++p) {
ws.surface_rates[p] *= group_constraint.second;
}
}
return group_constraint.first;
}
}
if (well.isProducer( )) {
const auto currentControl = ws.production_cmode;
if (currentControl != Well::ProducerCMode::GRUP) {
// This checks only the first encountered group limit,
// in theory there could be several, and then we should
// test all but the one currently applied. At that point,
// this if-statement should be removed and we should always
// check, skipping over only the single group parent whose
// control is the active one for the well (if any).
const auto& group = schedule.getGroup( well.groupName(), current_step_ );
const double efficiencyFactor = well.getEfficiencyFactor();
const std::pair<bool, double> group_constraint =
checkGroupConstraintsProd(group, well_state, group_state, efficiencyFactor,
schedule, summaryState, deferred_logger);
// If a group constraint was broken, we set the current well control to
// be GRUP.
if (group_constraint.first) {
ws.production_cmode = Well::ProducerCMode::GRUP;
const int np = well_state.numPhases();
for (int p = 0; p<np; ++p) {
ws.surface_rates[p] *= group_constraint.second;
}
}
return group_constraint.first;
}
}
return false;
}
template <typename FluidSystem>
bool
WellInterfaceFluidSystem<FluidSystem>::
checkConstraints(WellState& well_state,
const GroupState& group_state,
const Schedule& schedule,
const SummaryState& summaryState,
DeferredLogger& deferred_logger) const
{
const bool ind_broken = checkIndividualConstraints(well_state.well(this->index_of_well_), summaryState, deferred_logger);
if (ind_broken) {
return true;
} else {
return checkGroupConstraints(well_state, group_state, schedule, summaryState, deferred_logger);
}
}
template<typename FluidSystem>
bool
WellInterfaceFluidSystem<FluidSystem>::
checkRateEconLimits(const WellEconProductionLimits& econ_production_limits,
const double* rates_or_potentials,
DeferredLogger& deferred_logger) const
{
const PhaseUsage& pu = phaseUsage();
if (econ_production_limits.onMinOilRate()) {
assert(FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx));
const double oil_rate = rates_or_potentials[pu.phase_pos[ Oil ] ];
const double min_oil_rate = econ_production_limits.minOilRate();
if (std::abs(oil_rate) < min_oil_rate) {
return true;
}
}
if (econ_production_limits.onMinGasRate() ) {
assert(FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx));
const double gas_rate = rates_or_potentials[pu.phase_pos[ Gas ] ];
const double min_gas_rate = econ_production_limits.minGasRate();
if (std::abs(gas_rate) < min_gas_rate) {
return true;
}
}
if (econ_production_limits.onMinLiquidRate() ) {
assert(FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx));
assert(FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx));
const double oil_rate = rates_or_potentials[pu.phase_pos[ Oil ] ];
const double water_rate = rates_or_potentials[pu.phase_pos[ Water ] ];
const double liquid_rate = oil_rate + water_rate;
const double min_liquid_rate = econ_production_limits.minLiquidRate();
if (std::abs(liquid_rate) < min_liquid_rate) {
return true;
}
}
if (econ_production_limits.onMinReservoirFluidRate()) {
deferred_logger.warning("NOT_SUPPORTING_MIN_RESERVOIR_FLUID_RATE", "Minimum reservoir fluid production rate limit is not supported yet");
}
return false;
}
template<typename FluidSystem>
void
WellInterfaceFluidSystem<FluidSystem>::
checkMaxWaterCutLimit(const WellEconProductionLimits& econ_production_limits,
const SingleWellState& ws,
RatioLimitCheckReport& report) const
{
assert(FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx));
assert(FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx));
// function to calculate water cut based on rates
auto waterCut = [](const std::vector<double>& rates,
const PhaseUsage& pu) {
const double oil_rate = -rates[pu.phase_pos[Oil]];
const double water_rate = -rates[pu.phase_pos[Water]];
const double liquid_rate = oil_rate + water_rate;
if (liquid_rate == 0.)
return 0.;
else if (water_rate < 0)
return 0.;
else if (oil_rate < 0)
return 1.;
else
return (water_rate / liquid_rate);
};
const double max_water_cut_limit = econ_production_limits.maxWaterCut();
assert(max_water_cut_limit > 0.);
const bool watercut_limit_violated = checkMaxRatioLimitWell(ws, max_water_cut_limit, waterCut);
if (watercut_limit_violated) {
report.ratio_limit_violated = true;
checkMaxRatioLimitCompletions(ws, max_water_cut_limit, waterCut, report);
}
}
template<typename FluidSystem>
void
WellInterfaceFluidSystem<FluidSystem>::
checkMaxGORLimit(const WellEconProductionLimits& econ_production_limits,
const SingleWellState& ws,
RatioLimitCheckReport& report) const
{
assert(FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx));
assert(FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx));
// function to calculate gor based on rates
auto gor = [](const std::vector<double>& rates,
const PhaseUsage& pu) {
const double oil_rate = -rates[pu.phase_pos[Oil]];
const double gas_rate = -rates[pu.phase_pos[Gas]];
if (gas_rate <= 0.)
return 0.;
else if (oil_rate <= 0.)
return 1.e100; // big value to mark it as violated
else
return (gas_rate / oil_rate);
};
const double max_gor_limit = econ_production_limits.maxGasOilRatio();
assert(max_gor_limit > 0.);
const bool gor_limit_violated = checkMaxRatioLimitWell(ws, max_gor_limit, gor);
if (gor_limit_violated) {
report.ratio_limit_violated = true;
checkMaxRatioLimitCompletions(ws, max_gor_limit, gor, report);
}
}
template<typename FluidSystem>
void
WellInterfaceFluidSystem<FluidSystem>::
checkMaxWGRLimit(const WellEconProductionLimits& econ_production_limits,
const SingleWellState& ws,
RatioLimitCheckReport& report) const
{
assert(FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx));
assert(FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx));
// function to calculate wgr based on rates
auto wgr = [](const std::vector<double>& rates,
const PhaseUsage& pu) {
const double water_rate = -rates[pu.phase_pos[Water]];
const double gas_rate = -rates[pu.phase_pos[Gas]];
if (water_rate <= 0.)
return 0.;
else if (gas_rate <= 0.)
return 1.e100; // big value to mark it as violated
else
return (water_rate / gas_rate);
};
const double max_wgr_limit = econ_production_limits.maxWaterGasRatio();
assert(max_wgr_limit > 0.);
const bool wgr_limit_violated = checkMaxRatioLimitWell(ws, max_wgr_limit, wgr);
if (wgr_limit_violated) {
report.ratio_limit_violated = true;
checkMaxRatioLimitCompletions(ws, max_wgr_limit, wgr, report);
}
}
template<typename FluidSystem>
void
WellInterfaceFluidSystem<FluidSystem>::
checkRatioEconLimits(const WellEconProductionLimits& econ_production_limits,
const SingleWellState& ws,
RatioLimitCheckReport& report,
DeferredLogger& deferred_logger) const
{
// TODO: not sure how to define the worst-offending completion when more than one
// ratio related limit is violated.
// The defintion used here is that we define the violation extent based on the
// ratio between the value and the corresponding limit.
// For each violated limit, we decide the worst-offending completion separately.
// Among the worst-offending completions, we use the one has the biggest violation
// extent.
if (econ_production_limits.onMaxWaterCut()) {
checkMaxWaterCutLimit(econ_production_limits, ws, report);
}
if (econ_production_limits.onMaxGasOilRatio()) {
checkMaxGORLimit(econ_production_limits, ws, report);
}
if (econ_production_limits.onMaxWaterGasRatio()) {
checkMaxWGRLimit(econ_production_limits, ws, report);
}
if (econ_production_limits.onMaxGasLiquidRatio()) {
deferred_logger.warning("NOT_SUPPORTING_MAX_GLR", "the support for max Gas-Liquid ratio is not implemented yet!");
}
if (report.ratio_limit_violated) {
// No worst offending completion is found because all the completions are either injecting or
// have trivial rates.
if(report.worst_offending_completion == INVALIDCOMPLETION) {
std::string message = "The well ratio limit is violated but all the completion rates are trivial! " + this->name() + " is kept open";
deferred_logger.warning("WECON_INVALIDCOMPLETION", message);
report.ratio_limit_violated = false;
}
// Due to numerical instability there may exist corner cases where the well breaks
// the ratio limit but no completion does.
else if(report.violation_extent <= 1.) {
std::string message = "The well ratio limit is violated but no completion ratio limit is violated! " + this->name() + " is kept open";
deferred_logger.warning("WECON_INCONSISTANT_COMPLETION_WELL", message);
report.ratio_limit_violated = false;
}
}
}
template<typename FluidSystem>
void
WellInterfaceFluidSystem<FluidSystem>::
updateWellTestStateEconomic(const SingleWellState& ws,
const double simulation_time,
const bool write_message_to_opmlog,
WellTestState& well_test_state,
DeferredLogger& deferred_logger) const
{
if (this->wellIsStopped())
return;
const WellEconProductionLimits& econ_production_limits = well_ecl_.getEconLimits();
// if no limit is effective here, then continue to the next well
if ( !econ_production_limits.onAnyEffectiveLimit() ) {
return;
}
// flag to check if the mim oil/gas rate limit is violated
bool rate_limit_violated = false;
const auto& quantity_limit = econ_production_limits.quantityLimit();
if (econ_production_limits.onAnyRateLimit()) {
if (quantity_limit == WellEconProductionLimits::QuantityLimit::POTN) {
2021-08-05 03:57:15 -05:00
rate_limit_violated = checkRateEconLimits(econ_production_limits, ws.well_potentials.data(), deferred_logger);
// Due to instability of the bhpFromThpLimit code the potentials are sometimes wrong
// this can lead to premature shutting of wells due to rate limits of the potentials.
// Since rates are supposed to be less or equal to the potentials, we double-check
// that also the rate limit is violated before shutting the well.
if (rate_limit_violated)
rate_limit_violated = checkRateEconLimits(econ_production_limits, ws.surface_rates.data(), deferred_logger);
}
else {
rate_limit_violated = checkRateEconLimits(econ_production_limits, ws.surface_rates.data(), deferred_logger);
}
}
if (rate_limit_violated) {
if (econ_production_limits.endRun()) {
const std::string warning_message = std::string("ending run after well closed due to economic limits")
+ std::string("is not supported yet \n")
+ std::string("the program will keep running after ") + name()
+ std::string(" is closed");
deferred_logger.warning("NOT_SUPPORTING_ENDRUN", warning_message);
}
if (econ_production_limits.validFollowonWell()) {
deferred_logger.warning("NOT_SUPPORTING_FOLLOWONWELL", "opening following on well after well closed is not supported yet");
}
well_test_state.close_well(name(), WellTestConfig::Reason::ECONOMIC, simulation_time);
if (write_message_to_opmlog) {
if (this->well_ecl_.getAutomaticShutIn()) {
const std::string msg = std::string("well ") + name() + std::string(" will be shut due to rate economic limit");
deferred_logger.info(msg);
} else {
const std::string msg = std::string("well ") + name() + std::string(" will be stopped due to rate economic limit");
deferred_logger.info(msg);
}
}
// the well is closed, not need to check other limits
return;
}
if ( !econ_production_limits.onAnyRatioLimit() ) {
// there is no need to check the ratio limits
return;
}
// checking for ratio related limits, mostly all kinds of ratio.
RatioLimitCheckReport ratio_report;
checkRatioEconLimits(econ_production_limits, ws, ratio_report, deferred_logger);
if (ratio_report.ratio_limit_violated) {
const auto workover = econ_production_limits.workover();
switch (workover) {
case WellEconProductionLimits::EconWorkover::CON:
{
const int worst_offending_completion = ratio_report.worst_offending_completion;
well_test_state.close_completion(name(), worst_offending_completion, simulation_time);
if (write_message_to_opmlog) {
if (worst_offending_completion < 0) {
const std::string msg = std::string("Connection ") + std::to_string(- worst_offending_completion)
+ std::string(" for well ") + name() + std::string(" will be closed due to economic limit");
deferred_logger.info(msg);
} else {
const std::string msg = std::string("Completion ") + std::to_string(worst_offending_completion)
+ std::string(" for well ") + name() + std::string(" will be closed due to economic limit");
deferred_logger.info(msg);
}
}
bool allCompletionsClosed = true;
const auto& connections = well_ecl_.getConnections();
for (const auto& connection : connections) {
if (connection.state() == Connection::State::OPEN
&& !well_test_state.completion_is_closed(name(), connection.complnum())) {
allCompletionsClosed = false;
}
}
if (allCompletionsClosed) {
well_test_state.close_well(name(), WellTestConfig::Reason::ECONOMIC, simulation_time);
if (write_message_to_opmlog) {
if (this->well_ecl_.getAutomaticShutIn()) {
const std::string msg = name() + std::string(" will be shut due to last completion closed");
deferred_logger.info(msg);
} else {
const std::string msg = name() + std::string(" will be stopped due to last completion closed");
deferred_logger.info(msg);
}
}
}
break;
}
case WellEconProductionLimits::EconWorkover::WELL:
{
well_test_state.close_well(name(), WellTestConfig::Reason::ECONOMIC, simulation_time);
if (write_message_to_opmlog) {
if (well_ecl_.getAutomaticShutIn()) {
// tell the control that the well is closed
const std::string msg = name() + std::string(" will be shut due to ratio economic limit");
deferred_logger.info(msg);
} else {
const std::string msg = name() + std::string(" will be stopped due to ratio economic limit");
deferred_logger.info(msg);
}
}
break;
}
case WellEconProductionLimits::EconWorkover::NONE:
break;
default:
{
deferred_logger.warning("NOT_SUPPORTED_WORKOVER_TYPE",
"not supporting workover type " + WellEconProductionLimits::EconWorkover2String(workover) );
}
}
}
}
template<typename FluidSystem>
void
WellInterfaceFluidSystem<FluidSystem>::
updateWellTestState(const SingleWellState& ws,
const double& simulationTime,
const bool& writeMessageToOPMLog,
WellTestState& wellTestState,
DeferredLogger& deferred_logger) const
{
// updating well test state based on physical (THP/BHP) limits.
2021-09-20 04:41:40 -05:00
updateWellTestStatePhysical(simulationTime, writeMessageToOPMLog, wellTestState, deferred_logger);
2021-12-03 04:50:44 -06:00
// updating well test state based on Economic limits for operable wells
if (this->isOperableAndSolvable())
updateWellTestStateEconomic(ws, simulationTime, writeMessageToOPMLog, wellTestState, deferred_logger);
// TODO: well can be shut/closed due to other reasons
}
template<typename FluidSystem>
template <typename RatioFunc>
void WellInterfaceFluidSystem<FluidSystem>::
checkMaxRatioLimitCompletions(const SingleWellState& ws,
const double max_ratio_limit,
const RatioFunc& ratioFunc,
RatioLimitCheckReport& report) const
{
int worst_offending_completion = INVALIDCOMPLETION;
// the maximum water cut value of the completions
// it is used to identify the most offending completion
double max_ratio_completion = 0;
const int np = number_of_phases_;
const auto& perf_data = ws.perf_data;
2021-06-06 10:09:44 -05:00
const auto& perf_phase_rates = perf_data.phase_rates;
// look for the worst_offending_completion
for (const auto& completion : completions_) {
std::vector<double> completion_rates(np, 0.0);
// looping through the connections associated with the completion
const std::vector<int>& conns = completion.second;
for (const int c : conns) {
for (int p = 0; p < np; ++p) {
const double connection_rate = perf_phase_rates[c * np + p];
completion_rates[p] += connection_rate;
}
} // end of for (const int c : conns)
parallel_well_info_.communication().sum(completion_rates.data(), completion_rates.size());
const double ratio_completion = ratioFunc(completion_rates, phaseUsage());
if (ratio_completion > max_ratio_completion) {
worst_offending_completion = completion.first;
max_ratio_completion = ratio_completion;
}
} // end of for (const auto& completion : completions_)
const double violation_extent = max_ratio_completion / max_ratio_limit;
if (violation_extent > report.violation_extent) {
report.worst_offending_completion = worst_offending_completion;
report.violation_extent = violation_extent;
}
}
template<typename FluidSystem>
template<typename RatioFunc>
bool WellInterfaceFluidSystem<FluidSystem>::
checkMaxRatioLimitWell(const SingleWellState& ws,
const double max_ratio_limit,
const RatioFunc& ratioFunc) const
{
const int np = number_of_phases_;
std::vector<double> well_rates(np, 0.0);
for (int p = 0; p < np; ++p) {
well_rates[p] = ws.surface_rates[p];
}
const double well_ratio = ratioFunc(well_rates, phaseUsage());
return (well_ratio > max_ratio_limit);
}
template<typename FluidSystem>
int
WellInterfaceFluidSystem<FluidSystem>::
flowPhaseToEbosPhaseIdx(const int phaseIdx) const
{
const auto& pu = this->phaseUsage();
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) && pu.phase_pos[Water] == phaseIdx)
return FluidSystem::waterPhaseIdx;
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && pu.phase_pos[Oil] == phaseIdx)
return FluidSystem::oilPhaseIdx;
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) && pu.phase_pos[Gas] == phaseIdx)
return FluidSystem::gasPhaseIdx;
// for other phases return the index
return phaseIdx;
}
2021-06-10 08:09:05 -05:00
template<typename FluidSystem>
std::optional<double>
WellInterfaceFluidSystem<FluidSystem>::
getGroupInjectionTargetRate(const Group& group,
const WellState& well_state,
const GroupState& group_state,
const Schedule& schedule,
const SummaryState& summaryState,
const InjectorType& injectorType,
double efficiencyFactor,
DeferredLogger& deferred_logger) const
{
// Setting some defaults to silence warnings below.
// Will be overwritten in the switch statement.
Phase injectionPhase = Phase::WATER;
switch (injectorType) {
case InjectorType::WATER:
{
injectionPhase = Phase::WATER;
break;
}
case InjectorType::OIL:
{
injectionPhase = Phase::OIL;
break;
}
case InjectorType::GAS:
{
injectionPhase = Phase::GAS;
break;
}
default:
// Should not be here.
assert(false);
}
auto currentGroupControl = group_state.injection_control(group.name(), injectionPhase);
if (currentGroupControl == Group::InjectionCMode::FLD ||
currentGroupControl == Group::InjectionCMode::NONE) {
if (!group.injectionGroupControlAvailable(injectionPhase)) {
// We cannot go any further up the hierarchy. This could
// be the FIELD group, or any group for which this has
// been set in GCONINJE or GCONPROD. If we are here
// anyway, it is likely that the deck set inconsistent
// requirements, such as GRUP control mode on a well with
// no appropriate controls defined on any of its
// containing groups. We will therefore use the wells' bhp
// limit equation as a fallback.
return std::nullopt;
} else {
// Inject share of parents control
const auto& parent = schedule.getGroup( group.parent(), currentStep());
efficiencyFactor *= group.getGroupEfficiencyFactor();
return getGroupInjectionTargetRate(parent, well_state, group_state, schedule, summaryState, injectorType, efficiencyFactor, deferred_logger);
}
}
const auto pu = phaseUsage();
if (!group.isInjectionGroup()) {
return std::nullopt;
}
// If we are here, we are at the topmost group to be visited in the recursion.
// This is the group containing the control we will check against.
// Make conversion factors for RESV <-> surface rates.
std::vector<double> resv_coeff(pu.num_phases, 1.0);
rateConverter_.calcCoeff(0, pvtRegionIdx(), resv_coeff); // FIPNUM region 0 here, should use FIPNUM from WELSPECS.
double sales_target = 0;
if (schedule[currentStep()].gconsale().has(group.name())) {
const auto& gconsale = schedule[currentStep()].gconsale().get(group.name(), summaryState);
sales_target = gconsale.sales_target;
}
2021-09-01 08:04:54 -05:00
WellGroupHelpers::InjectionTargetCalculator tcalc(currentGroupControl, pu, resv_coeff, group.name(), sales_target, group_state, injectionPhase, group.has_gpmaint_control(injectionPhase, currentGroupControl), deferred_logger);
2021-06-10 08:09:05 -05:00
WellGroupHelpers::FractionCalculator fcalc(schedule, well_state, group_state, currentStep(), guideRate(), tcalc.guideTargetMode(), pu, false, injectionPhase);
auto localFraction = [&](const std::string& child) {
return fcalc.localFraction(child, child); //Note child needs to be passed to always include since the global isGrup map is not updated yet.
2021-06-10 08:09:05 -05:00
};
auto localReduction = [&](const std::string& group_name) {
const std::vector<double>& groupTargetReductions = group_state.injection_reduction_rates(group_name);
return tcalc.calcModeRateFromRates(groupTargetReductions);
};
const double orig_target = tcalc.groupTarget(group.injectionControls(injectionPhase, summaryState), deferred_logger);
const auto chain = WellGroupHelpers::groupChainTopBot(name(), group.name(), schedule, currentStep());
// Because 'name' is the last of the elements, and not an ancestor, we subtract one below.
const size_t num_ancestors = chain.size() - 1;
double target = orig_target;
for (size_t ii = 0; ii < num_ancestors; ++ii) {
if ((ii == 0) || guideRate()->has(chain[ii], injectionPhase)) {
// Apply local reductions only at the control level
// (top) and for levels where we have a specified
// group guide rate.
target -= localReduction(chain[ii]);
}
target *= localFraction(chain[ii+1]);
}
return std::max(0.0, target / efficiencyFactor);
}
template<typename FluidSystem>
double
WellInterfaceFluidSystem<FluidSystem>::
getGroupProductionTargetRate(const Group& group,
const WellState& well_state,
const GroupState& group_state,
const Schedule& schedule,
const SummaryState& summaryState,
double efficiencyFactor) const
{
const Group::ProductionCMode& currentGroupControl = group_state.production_control(group.name());
if (currentGroupControl == Group::ProductionCMode::FLD ||
currentGroupControl == Group::ProductionCMode::NONE) {
if (!group.productionGroupControlAvailable()) {
return 1.0;
} else {
// Produce share of parents control
const auto& parent = schedule.getGroup(group.parent(), currentStep());
efficiencyFactor *= group.getGroupEfficiencyFactor();
return getGroupProductionTargetRate(parent, well_state, group_state, schedule, summaryState, efficiencyFactor);
}
}
const auto pu = phaseUsage();
if (!group.isProductionGroup()) {
return 1.0;
}
// If we are here, we are at the topmost group to be visited in the recursion.
// This is the group containing the control we will check against.
// Make conversion factors for RESV <-> surface rates.
std::vector<double> resv_coeff(phaseUsage().num_phases, 1.0);
rateConverter_.calcCoeff(0, pvtRegionIdx(), resv_coeff); // FIPNUM region 0 here, should use FIPNUM from WELSPECS.
// gconsale may adjust the grat target.
// the adjusted rates is send to the targetCalculator
double gratTargetFromSales = 0.0;
if (group_state.has_grat_sales_target(group.name()))
gratTargetFromSales = group_state.grat_sales_target(group.name());
2021-09-01 08:04:54 -05:00
WellGroupHelpers::TargetCalculator tcalc(currentGroupControl, pu, resv_coeff, gratTargetFromSales, group.name(), group_state, group.has_gpmaint_control(currentGroupControl));
2021-06-10 08:09:05 -05:00
WellGroupHelpers::FractionCalculator fcalc(schedule, well_state, group_state, currentStep(), guideRate(), tcalc.guideTargetMode(), pu, true, Phase::OIL);
auto localFraction = [&](const std::string& child) {
return fcalc.localFraction(child, child); //Note child needs to be passed to always include since the global isGrup map is not updated yet.
2021-06-10 08:09:05 -05:00
};
auto localReduction = [&](const std::string& group_name) {
const std::vector<double>& groupTargetReductions = group_state.production_reduction_rates(group_name);
return tcalc.calcModeRateFromRates(groupTargetReductions);
};
const double orig_target = tcalc.groupTarget(group.productionControls(summaryState));
const auto chain = WellGroupHelpers::groupChainTopBot(name(), group.name(), schedule, currentStep());
// Because 'name' is the last of the elements, and not an ancestor, we subtract one below.
const size_t num_ancestors = chain.size() - 1;
double target = orig_target;
for (size_t ii = 0; ii < num_ancestors; ++ii) {
if ((ii == 0) || guideRate()->has(chain[ii])) {
// Apply local reductions only at the control level
// (top) and for levels where we have a specified
// group guide rate.
target -= localReduction(chain[ii]);
}
target *= localFraction(chain[ii+1]);
}
// Avoid negative target rates coming from too large local reductions.
const double target_rate = std::max(0.0, target / efficiencyFactor);
const auto& ws = well_state.well(this->index_of_well_);
const auto& rates = ws.surface_rates;
2021-06-10 08:09:05 -05:00
const auto current_rate = -tcalc.calcModeRateFromRates(rates); // Switch sign since 'rates' are negative for producers.
double scale = 1.0;
if (current_rate > 1e-14)
scale = target_rate/current_rate;
return scale;
}
template class WellInterfaceFluidSystem<BlackOilFluidSystem<double,BlackOilDefaultIndexTraits>>;
} // namespace Opm