opm-simulators/opm/autodiff/VFPInjProperties.cpp

230 lines
6.0 KiB
C++
Raw Normal View History

/*
Copyright 2015 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include "config.h"
#include <opm/autodiff/VFPInjProperties.hpp>
#include <opm/parser/eclipse/EclipseState/Tables/VFPProdTable.hpp>
#include <opm/core/props/BlackoilPhases.hpp>
#include <opm/core/utility/ErrorMacros.hpp>
#include <opm/autodiff/AutoDiffHelpers.hpp>
#include <opm/autodiff/VFPHelpers.hpp>
namespace Opm {
namespace detail {
} //Namespace detail
VFPInjProperties::VFPInjProperties() {
}
VFPInjProperties::VFPInjProperties(const VFPInjTable* table){
m_tables[table->getTableNum()] = table;
}
VFPInjProperties::VFPInjProperties(const std::map<int, VFPInjTable>& tables) {
for (const auto& table : tables) {
m_tables[table.first] = &table.second;
}
}
VFPInjProperties::ADB VFPInjProperties::bhp(const std::vector<int>& table_id,
const Wells& wells,
const ADB& qs,
const ADB& thp) const {
const int np = wells.number_of_phases;
const int nw = wells.number_of_wells;
//Short-hands for water / oil / gas phases
//TODO enable support for two-phase.
assert(np == 3);
const ADB& w = subset(qs, Span(nw, 1, BlackoilPhases::Aqua*nw));
const ADB& o = subset(qs, Span(nw, 1, BlackoilPhases::Liquid*nw));
const ADB& g = subset(qs, Span(nw, 1, BlackoilPhases::Vapour*nw));
return bhp(table_id, w, o, g, thp);
}
VFPInjProperties::ADB VFPInjProperties::bhp(const std::vector<int>& table_id,
const ADB& aqua,
const ADB& liquid,
const ADB& vapour,
const ADB& thp) const {
const int nw = thp.size();
std::vector<int> block_pattern = detail::commonBlockPattern(aqua, liquid, vapour, thp);
assert(static_cast<int>(table_id.size()) == nw);
assert(aqua.size() == nw);
assert(liquid.size() == nw);
assert(vapour.size() == nw);
assert(thp.size() == nw);
//Allocate data for bhp's and partial derivatives
ADB::V value = ADB::V::Zero(nw);
ADB::V dthp = ADB::V::Zero(nw);
ADB::V dflo = ADB::V::Zero(nw);
//Get the table for each well
std::vector<const VFPInjTable*> well_tables(nw, NULL);
for (int i=0; i<nw; ++i) {
if (table_id[i] >= 0) {
well_tables[i] = detail::getTable(m_tables, table_id[i]);
}
}
//Get the right FLO variable for each well as a single ADB
const ADB flo = detail::gather_vars<VFPInjTable::FLO_TYPE>(well_tables, aqua, liquid, vapour);
//Compute the BHP for each well independently
for (int i=0; i<nw; ++i) {
const VFPInjTable* table = well_tables[i];
if (table != NULL) {
//First, find the values to interpolate between
auto flo_i = detail::findInterpData(flo.value()[i], table->getFloAxis());
auto thp_i = detail::findInterpData(thp.value()[i], table->getTHPAxis());
detail::adb_like bhp_val = detail::interpolate(table->getTable(), flo_i, thp_i);
value[i] = bhp_val.value;
dthp[i] = bhp_val.dthp;
dflo[i] = bhp_val.dflo;
}
else {
value[i] = -1e100; //Signal that this value has not been calculated properly, due to "missing" table
}
}
//Create diagonal matrices from ADB::Vs
ADB::M dthp_diag = spdiag(dthp);
ADB::M dflo_diag = spdiag(dflo);
//Calculate the Jacobians
const int num_blocks = block_pattern.size();
std::vector<ADB::M> jacs(num_blocks);
for (int block = 0; block < num_blocks; ++block) {
//Could have used fastSparseProduct and temporary variables
//but may not save too much on that.
jacs[block] = ADB::M(nw, block_pattern[block]);
if (!thp.derivative().empty()) {
jacs[block] += dthp_diag * thp.derivative()[block];
}
if (!flo.derivative().empty()) {
jacs[block] += dflo_diag * flo.derivative()[block];
}
}
ADB retval = ADB::function(std::move(value), std::move(jacs));
return retval;
}
double VFPInjProperties::bhp(int table_id,
const double& aqua,
const double& liquid,
const double& vapour,
const double& thp) const {
const VFPInjTable* table = detail::getTable(m_tables, table_id);
detail::adb_like retval = detail::bhp(table, aqua, liquid, vapour, thp);
return retval.value;
}
double VFPInjProperties::thp(int table_id,
const double& aqua,
const double& liquid,
const double& vapour,
const double& bhp) const {
const VFPInjTable* table = detail::getTable(m_tables, table_id);
const VFPInjTable::array_type& data = table->getTable();
//Find interpolation variables
double flo = detail::getFlo(aqua, liquid, vapour, table->getFloType());
const std::vector<double> thp_array = table->getTHPAxis();
int nthp = thp_array.size();
/**
* Find the function bhp_array(thp) by creating a 1D view of the data
* by interpolating for every value of thp. This might be somewhat
* expensive, but let us assome that nthp is small
*/
auto flo_i = detail::findInterpData(flo, table->getFloAxis());
std::vector<double> bhp_array(nthp);
for (int i=0; i<nthp; ++i) {
auto thp_i = detail::findInterpData(thp_array[i], thp_array);
bhp_array[i] = detail::interpolate(data, flo_i, thp_i).value;
}
double thp = detail::findTHP(bhp_array, thp_array, bhp);
return thp;
}
} //Namespace Opm