mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-27 18:26:25 -06:00
512 lines
20 KiB
C++
512 lines
20 KiB
C++
|
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
||
|
// vi: set et ts=4 sw=4 sts=4:
|
||
|
/*
|
||
|
This file is part of the Open Porous Media project (OPM).
|
||
|
|
||
|
OPM is free software: you can redistribute it and/or modify
|
||
|
it under the terms of the GNU General Public License as published by
|
||
|
the Free Software Foundation, either version 2 of the License, or
|
||
|
(at your option) any later version.
|
||
|
|
||
|
OPM is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
GNU General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU General Public License
|
||
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||
|
|
||
|
Consult the COPYING file in the top-level source directory of this
|
||
|
module for the precise wording of the license and the list of
|
||
|
copyright holders.
|
||
|
*/
|
||
|
/*!
|
||
|
* \file
|
||
|
*
|
||
|
* \brief This file contains the flux module that uses transmissibilities
|
||
|
*
|
||
|
* The transmissibility approach to fluxes used here is limited
|
||
|
* to the two-point flux approximation
|
||
|
*/
|
||
|
#ifndef EWOMS_TRANS_FLUX_MODULE_HH
|
||
|
#define EWOMS_TRANS_FLUX_MODULE_HH
|
||
|
|
||
|
#include "multiphasebaseproperties.hh"
|
||
|
#include <opm/models/utils/signum.hh>
|
||
|
#include <opm/material/common/Valgrind.hpp>
|
||
|
#include <dune/common/fvector.hh>
|
||
|
#include <dune/common/fmatrix.hh>
|
||
|
|
||
|
namespace Opm {
|
||
|
|
||
|
template <class TypeTag>
|
||
|
class TransIntensiveQuantities;
|
||
|
|
||
|
template <class TypeTag>
|
||
|
class TransExtensiveQuantities;
|
||
|
|
||
|
template <class TypeTag>
|
||
|
class TransBaseProblem;
|
||
|
|
||
|
/*!
|
||
|
* \brief Specifies a flux module which uses transmissibilities.
|
||
|
*/
|
||
|
template <class TypeTag>
|
||
|
struct TransFluxModule
|
||
|
{
|
||
|
using FluxIntensiveQuantities = TransIntensiveQuantities<TypeTag>;
|
||
|
using FluxExtensiveQuantities = TransExtensiveQuantities<TypeTag>;
|
||
|
using FluxBaseProblem = TransBaseProblem<TypeTag>;
|
||
|
/*!
|
||
|
* \brief Register all run-time parameters for the flux module.
|
||
|
*/
|
||
|
static void registerParameters()
|
||
|
{ }
|
||
|
};
|
||
|
|
||
|
/*!
|
||
|
* \brief Provides the defaults for the parameters required by the
|
||
|
* transmissibility based volume flux calculation.
|
||
|
*/
|
||
|
template <class TypeTag>
|
||
|
class TransBaseProblem
|
||
|
{ };
|
||
|
|
||
|
/*!
|
||
|
* \brief Provides the intensive quantities for the transmissibility based flux module
|
||
|
*/
|
||
|
template <class TypeTag>
|
||
|
class TransIntensiveQuantities
|
||
|
{
|
||
|
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
|
||
|
protected:
|
||
|
void update_(const ElementContext&, unsigned, unsigned)
|
||
|
{ }
|
||
|
};
|
||
|
|
||
|
/*!
|
||
|
* \brief Provides the transmissibility based flux module
|
||
|
*/
|
||
|
template <class TypeTag>
|
||
|
class TransExtensiveQuantities
|
||
|
{
|
||
|
using Implementation = GetPropType<TypeTag, Properties::ExtensiveQuantities>;
|
||
|
|
||
|
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
|
||
|
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
|
||
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
||
|
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
|
||
|
using GridView = GetPropType<TypeTag, Properties::GridView>;
|
||
|
using MaterialLaw = GetPropType<TypeTag, Properties::MaterialLaw>;
|
||
|
using Discretization = GetPropType<TypeTag, Properties::Discretization>;
|
||
|
|
||
|
enum { dimWorld = GridView::dimensionworld };
|
||
|
enum { numPhases = FluidSystem::numPhases };
|
||
|
|
||
|
typedef MathToolbox<Evaluation> Toolbox;
|
||
|
typedef Dune::FieldVector<Scalar, dimWorld> DimVector;
|
||
|
typedef Dune::FieldVector<Evaluation, dimWorld> EvalDimVector;
|
||
|
typedef Dune::FieldMatrix<Scalar, dimWorld, dimWorld> DimMatrix;
|
||
|
|
||
|
public:
|
||
|
/*!
|
||
|
* \brief Return the intrinsic permeability tensor at a face [m^2]
|
||
|
*/
|
||
|
const DimMatrix& intrinsicPermeability() const
|
||
|
{
|
||
|
throw std::logic_error("The ECL transmissibility module does not provide an explicit intrinsic permeability");
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
* \brief Return the pressure potential gradient of a fluid phase at the
|
||
|
* face's integration point [Pa/m]
|
||
|
*
|
||
|
* \param phaseIdx The index of the fluid phase
|
||
|
*/
|
||
|
const EvalDimVector& potentialGrad(unsigned) const
|
||
|
{
|
||
|
throw std::logic_error("The ECL transmissibility module does not provide explicit potential gradients");
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
* \brief Return the gravity corrected pressure difference between the interior and
|
||
|
* the exterior of a face.
|
||
|
*
|
||
|
* \param phaseIdx The index of the fluid phase
|
||
|
*/
|
||
|
const Evaluation& pressureDifference(unsigned phaseIdx) const
|
||
|
{ return pressureDifference_[phaseIdx]; }
|
||
|
|
||
|
/*!
|
||
|
* \brief Return the filter velocity of a fluid phase at the face's integration point
|
||
|
* [m/s]
|
||
|
*
|
||
|
* \param phaseIdx The index of the fluid phase
|
||
|
*/
|
||
|
const EvalDimVector& filterVelocity(unsigned) const
|
||
|
{
|
||
|
throw std::logic_error("The ECL transmissibility module does not provide explicit filter velocities");
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
* \brief Return the volume flux of a fluid phase at the face's integration point
|
||
|
* \f$[m^3/s / m^2]\f$
|
||
|
*
|
||
|
* This is the fluid volume of a phase per second and per square meter of face
|
||
|
* area.
|
||
|
*
|
||
|
* \param phaseIdx The index of the fluid phase
|
||
|
*/
|
||
|
const Evaluation& volumeFlux(unsigned phaseIdx) const
|
||
|
{ return volumeFlux_[phaseIdx]; }
|
||
|
|
||
|
protected:
|
||
|
/*!
|
||
|
* \brief Returns the local index of the degree of freedom in which is
|
||
|
* in upstream direction.
|
||
|
*
|
||
|
* i.e., the DOF which exhibits a higher effective pressure for
|
||
|
* the given phase.
|
||
|
*/
|
||
|
unsigned upstreamIndex_(unsigned phaseIdx) const
|
||
|
{
|
||
|
assert(phaseIdx < numPhases);
|
||
|
|
||
|
return upIdx_[phaseIdx];
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
* \brief Returns the local index of the degree of freedom in which is
|
||
|
* in downstream direction.
|
||
|
*
|
||
|
* i.e., the DOF which exhibits a lower effective pressure for the
|
||
|
* given phase.
|
||
|
*/
|
||
|
unsigned downstreamIndex_(unsigned phaseIdx) const
|
||
|
{
|
||
|
assert(phaseIdx < numPhases);
|
||
|
|
||
|
return dnIdx_[phaseIdx];
|
||
|
}
|
||
|
|
||
|
void updateSolvent(const ElementContext& elemCtx, unsigned scvfIdx, unsigned timeIdx)
|
||
|
{ asImp_().updateVolumeFluxTrans(elemCtx, scvfIdx, timeIdx); }
|
||
|
|
||
|
void updatePolymer(const ElementContext& elemCtx, unsigned scvfIdx, unsigned timeIdx)
|
||
|
{ asImp_().updateShearMultipliers(elemCtx, scvfIdx, timeIdx); }
|
||
|
|
||
|
/*!
|
||
|
* \brief Update the required gradients for interior faces
|
||
|
*/
|
||
|
void calculateGradients_(const ElementContext& elemCtx, unsigned scvfIdx, unsigned timeIdx)
|
||
|
{
|
||
|
Valgrind::SetUndefined(*this);
|
||
|
|
||
|
// only valied for element center finite volume discretization
|
||
|
static const bool isEcfv = std::is_same<Discretization, EcfvDiscretization<TypeTag> >::value;
|
||
|
|
||
|
static_assert(isEcfv);
|
||
|
|
||
|
const auto& stencil = elemCtx.stencil(timeIdx);
|
||
|
const auto& scvf = stencil.interiorFace(scvfIdx);
|
||
|
|
||
|
interiorDofIdx_ = scvf.interiorIndex();
|
||
|
exteriorDofIdx_ = scvf.exteriorIndex();
|
||
|
assert(interiorDofIdx_ != exteriorDofIdx_);
|
||
|
|
||
|
unsigned I = stencil.globalSpaceIndex(interiorDofIdx_);
|
||
|
unsigned J = stencil.globalSpaceIndex(exteriorDofIdx_);
|
||
|
|
||
|
Scalar trans = transmissibility_(elemCtx, scvfIdx, timeIdx);
|
||
|
|
||
|
// estimate the gravity correction: for performance reasons we use a simplified
|
||
|
// approach for this flux module that assumes that gravity is constant and always
|
||
|
// acts into the downwards direction. (i.e., no centrifuge experiments, sorry.)
|
||
|
Scalar g = elemCtx.problem().gravity()[dimWorld - 1];
|
||
|
|
||
|
const auto& intQuantsIn = elemCtx.intensiveQuantities(interiorDofIdx_, timeIdx);
|
||
|
const auto& intQuantsEx = elemCtx.intensiveQuantities(exteriorDofIdx_, timeIdx);
|
||
|
|
||
|
Scalar zIn = dofCenterDepth_(elemCtx, interiorDofIdx_, timeIdx);
|
||
|
Scalar zEx = dofCenterDepth_(elemCtx, exteriorDofIdx_, timeIdx);
|
||
|
// the distances from the DOF's depths. (i.e., the additional depth of the
|
||
|
// exterior DOF)
|
||
|
Scalar distZ = zIn - zEx;
|
||
|
|
||
|
for (unsigned phaseIdx=0; phaseIdx < numPhases; phaseIdx++) {
|
||
|
if (!FluidSystem::phaseIsActive(phaseIdx))
|
||
|
continue;
|
||
|
|
||
|
// check shortcut: if the mobility of the phase is zero in the interior as
|
||
|
// well as the exterior DOF, we can skip looking at the phase.
|
||
|
if (intQuantsIn.mobility(phaseIdx) <= 0.0 &&
|
||
|
intQuantsEx.mobility(phaseIdx) <= 0.0)
|
||
|
{
|
||
|
upIdx_[phaseIdx] = interiorDofIdx_;
|
||
|
dnIdx_[phaseIdx] = exteriorDofIdx_;
|
||
|
pressureDifference_[phaseIdx] = 0.0;
|
||
|
volumeFlux_[phaseIdx] = 0.0;
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
// do the gravity correction: compute the hydrostatic pressure for the
|
||
|
// external at the depth of the internal one
|
||
|
const Evaluation& rhoIn = intQuantsIn.fluidState().density(phaseIdx);
|
||
|
Scalar rhoEx = Toolbox::value(intQuantsEx.fluidState().density(phaseIdx));
|
||
|
Evaluation rhoAvg = (rhoIn + rhoEx)/2;
|
||
|
|
||
|
const Evaluation& pressureInterior = intQuantsIn.fluidState().pressure(phaseIdx);
|
||
|
Evaluation pressureExterior = Toolbox::value(intQuantsEx.fluidState().pressure(phaseIdx));
|
||
|
|
||
|
pressureExterior += rhoAvg*(distZ*g);
|
||
|
|
||
|
pressureDifference_[phaseIdx] = pressureExterior - pressureInterior;
|
||
|
|
||
|
// decide the upstream index for the phase. for this we make sure that the
|
||
|
// degree of freedom which is regarded upstream if both pressures are equal
|
||
|
// is always the same: if the pressure is equal, the DOF with the lower
|
||
|
// global index is regarded to be the upstream one.
|
||
|
if (pressureDifference_[phaseIdx] > 0.0) {
|
||
|
upIdx_[phaseIdx] = exteriorDofIdx_;
|
||
|
dnIdx_[phaseIdx] = interiorDofIdx_;
|
||
|
}
|
||
|
else if (pressureDifference_[phaseIdx] < 0.0) {
|
||
|
upIdx_[phaseIdx] = interiorDofIdx_;
|
||
|
dnIdx_[phaseIdx] = exteriorDofIdx_;
|
||
|
}
|
||
|
else {
|
||
|
// if the pressure difference is zero, we chose the DOF which has the
|
||
|
// larger volume associated to it as upstream DOF
|
||
|
Scalar Vin = elemCtx.dofVolume(interiorDofIdx_, /*timeIdx=*/0);
|
||
|
Scalar Vex = elemCtx.dofVolume(exteriorDofIdx_, /*timeIdx=*/0);
|
||
|
if (Vin > Vex) {
|
||
|
upIdx_[phaseIdx] = interiorDofIdx_;
|
||
|
dnIdx_[phaseIdx] = exteriorDofIdx_;
|
||
|
}
|
||
|
else if (Vin < Vex) {
|
||
|
upIdx_[phaseIdx] = exteriorDofIdx_;
|
||
|
dnIdx_[phaseIdx] = interiorDofIdx_;
|
||
|
}
|
||
|
else {
|
||
|
assert(Vin == Vex);
|
||
|
// if the volumes are also equal, we pick the DOF which exhibits the
|
||
|
// smaller global index
|
||
|
if (I < J) {
|
||
|
upIdx_[phaseIdx] = interiorDofIdx_;
|
||
|
dnIdx_[phaseIdx] = exteriorDofIdx_;
|
||
|
}
|
||
|
else {
|
||
|
upIdx_[phaseIdx] = exteriorDofIdx_;
|
||
|
dnIdx_[phaseIdx] = interiorDofIdx_;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// this is slightly hacky because in the automatic differentiation case, it
|
||
|
// only works for the element centered finite volume method. for ebos this
|
||
|
// does not matter, though.
|
||
|
unsigned upstreamIdx = upstreamIndex_(phaseIdx);
|
||
|
const auto& up = elemCtx.intensiveQuantities(upstreamIdx, timeIdx);
|
||
|
|
||
|
if (upstreamIdx == interiorDofIdx_)
|
||
|
volumeFlux_[phaseIdx] =
|
||
|
pressureDifference_[phaseIdx]*up.mobility(phaseIdx)*(-trans);
|
||
|
else
|
||
|
volumeFlux_[phaseIdx] =
|
||
|
pressureDifference_[phaseIdx]*(Toolbox::value(up.mobility(phaseIdx))*(-trans));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
* \brief Update the required gradients for boundary faces
|
||
|
*/
|
||
|
template <class FluidState>
|
||
|
void calculateBoundaryGradients_(const ElementContext& elemCtx,
|
||
|
unsigned scvfIdx,
|
||
|
unsigned timeIdx,
|
||
|
const FluidState& exFluidState)
|
||
|
{
|
||
|
const auto& stencil = elemCtx.stencil(timeIdx);
|
||
|
const auto& scvf = stencil.boundaryFace(scvfIdx);
|
||
|
|
||
|
interiorDofIdx_ = scvf.interiorIndex();
|
||
|
|
||
|
Scalar trans = transmissibilityBoundary_(elemCtx, scvfIdx, timeIdx);
|
||
|
|
||
|
// estimate the gravity correction: for performance reasons we use a simplified
|
||
|
// approach for this flux module that assumes that gravity is constant and always
|
||
|
// acts into the downwards direction. (i.e., no centrifuge experiments, sorry.)
|
||
|
Scalar g = elemCtx.problem().gravity()[dimWorld - 1];
|
||
|
|
||
|
const auto& intQuantsIn = elemCtx.intensiveQuantities(interiorDofIdx_, timeIdx);
|
||
|
|
||
|
// this is quite hacky because the dune grid interface does not provide a
|
||
|
// cellCenterDepth() method (so we ask the problem to provide it). The "good"
|
||
|
// solution would be to take the Z coordinate of the element centroids, but since
|
||
|
// ECL seems to like to be inconsistent on that front, it needs to be done like
|
||
|
// here...
|
||
|
Scalar zIn = dofCenterDepth_(elemCtx, interiorDofIdx_, timeIdx);
|
||
|
Scalar zEx = scvf.integrationPos()[dimWorld - 1];
|
||
|
|
||
|
// the distances from the DOF's depths. (i.e., the additional depth of the
|
||
|
// exterior DOF)
|
||
|
Scalar distZ = zIn - zEx;
|
||
|
|
||
|
for (unsigned phaseIdx=0; phaseIdx < numPhases; phaseIdx++) {
|
||
|
if (!FluidSystem::phaseIsActive(phaseIdx))
|
||
|
continue;
|
||
|
|
||
|
// do the gravity correction: compute the hydrostatic pressure for the
|
||
|
// integration position
|
||
|
const Evaluation& rhoIn = intQuantsIn.fluidState().density(phaseIdx);
|
||
|
const auto& rhoEx = exFluidState.density(phaseIdx);
|
||
|
Evaluation rhoAvg = (rhoIn + rhoEx)/2;
|
||
|
|
||
|
const Evaluation& pressureInterior = intQuantsIn.fluidState().pressure(phaseIdx);
|
||
|
Evaluation pressureExterior = exFluidState.pressure(phaseIdx);
|
||
|
pressureExterior += rhoAvg*(distZ*g);
|
||
|
|
||
|
pressureDifference_[phaseIdx] = pressureExterior - pressureInterior;
|
||
|
|
||
|
// decide the upstream index for the phase. for this we make sure that the
|
||
|
// degree of freedom which is regarded upstream if both pressures are equal
|
||
|
// is always the same: if the pressure is equal, the DOF with the lower
|
||
|
// global index is regarded to be the upstream one.
|
||
|
if (pressureDifference_[phaseIdx] > 0.0) {
|
||
|
upIdx_[phaseIdx] = -1;
|
||
|
dnIdx_[phaseIdx] = interiorDofIdx_;
|
||
|
}
|
||
|
else {
|
||
|
upIdx_[phaseIdx] = interiorDofIdx_;
|
||
|
dnIdx_[phaseIdx] = -1;
|
||
|
}
|
||
|
|
||
|
short upstreamIdx = upstreamIndex_(phaseIdx);
|
||
|
if (upstreamIdx == interiorDofIdx_) {
|
||
|
|
||
|
// this is slightly hacky because in the automatic differentiation case, it
|
||
|
// only works for the element centered finite volume method. for ebos this
|
||
|
// does not matter, though.
|
||
|
const auto& up = elemCtx.intensiveQuantities(upstreamIdx, timeIdx);
|
||
|
|
||
|
volumeFlux_[phaseIdx] =
|
||
|
pressureDifference_[phaseIdx]*up.mobility(phaseIdx)*(-trans);
|
||
|
|
||
|
}
|
||
|
else {
|
||
|
// compute the phase mobility using the material law parameters of the
|
||
|
// interior element. \todo {this could probably be done more efficiently}
|
||
|
const auto& matParams =
|
||
|
elemCtx.problem().materialLawParams(elemCtx,
|
||
|
interiorDofIdx_,
|
||
|
/*timeIdx=*/0);
|
||
|
typename FluidState::Scalar kr[numPhases];
|
||
|
MaterialLaw::relativePermeabilities(kr, matParams, exFluidState);
|
||
|
|
||
|
const auto& mob = kr[phaseIdx]/exFluidState.viscosity(phaseIdx);
|
||
|
volumeFlux_[phaseIdx] =
|
||
|
pressureDifference_[phaseIdx]*mob*(-trans);
|
||
|
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
* \brief Update the volumetric fluxes for all fluid phases on the interior faces of the context
|
||
|
*/
|
||
|
void calculateFluxes_(const ElementContext&, unsigned, unsigned)
|
||
|
{ }
|
||
|
|
||
|
void calculateBoundaryFluxes_(const ElementContext&, unsigned, unsigned)
|
||
|
{}
|
||
|
|
||
|
private:
|
||
|
|
||
|
Scalar transmissibility_(const ElementContext& elemCtx, unsigned scvfIdx, unsigned timeIdx) const
|
||
|
{
|
||
|
const auto& stencil = elemCtx.stencil(timeIdx);
|
||
|
const auto& face = stencil.interiorFace(scvfIdx);
|
||
|
const auto& interiorPos = stencil.subControlVolume(face.interiorIndex()).globalPos();
|
||
|
const auto& exteriorPos = stencil.subControlVolume(face.exteriorIndex()).globalPos();
|
||
|
auto distVec0 = face.integrationPos() - interiorPos;
|
||
|
auto distVec1 = face.integrationPos() - exteriorPos;
|
||
|
Scalar ndotDistIn = std::abs(face.normal() * distVec0);
|
||
|
Scalar ndotDistExt = std::abs(face.normal() * distVec1);
|
||
|
|
||
|
Scalar distSquaredIn = distVec0 * distVec0;
|
||
|
Scalar distSquaredExt = distVec1 * distVec1;
|
||
|
const auto& K0mat = elemCtx.problem().intrinsicPermeability(elemCtx, face.interiorIndex(), timeIdx);
|
||
|
const auto& K1mat = elemCtx.problem().intrinsicPermeability(elemCtx, face.exteriorIndex(), timeIdx);
|
||
|
// the permeability per definition aligns with the grid
|
||
|
// we only support diagonal permeability tensor
|
||
|
// and can therefore neglect off-diagonal values
|
||
|
int idx = 0;
|
||
|
Scalar val = 0.0;
|
||
|
for (unsigned i = 0; i < dimWorld; ++ i){
|
||
|
if (std::abs(face.normal()[i]) > val) {
|
||
|
val = std::abs(face.normal()[i]);
|
||
|
idx = i;
|
||
|
}
|
||
|
}
|
||
|
const Scalar& K0 = K0mat[idx][idx];
|
||
|
const Scalar& K1 = K1mat[idx][idx];
|
||
|
const Scalar T0 = K0 * ndotDistIn / distSquaredIn;
|
||
|
const Scalar T1 = K1 * ndotDistExt / distSquaredExt;
|
||
|
return T0 * T1 / (T0 + T1);
|
||
|
}
|
||
|
Scalar transmissibilityBoundary_(const ElementContext& elemCtx, unsigned scvfIdx, unsigned timeIdx) const
|
||
|
{
|
||
|
const auto& stencil = elemCtx.stencil(timeIdx);
|
||
|
const auto& face = stencil.interiorFace(scvfIdx);
|
||
|
const auto& interiorPos = stencil.subControlVolume(face.interiorIndex()).globalPos();
|
||
|
auto distVec0 = face.integrationPos() - interiorPos;
|
||
|
Scalar ndotDistIn = face.normal() * distVec0;
|
||
|
Scalar distSquaredIn = distVec0 * distVec0;
|
||
|
const auto& K0mat = elemCtx.problem().intrinsicPermeability(elemCtx, face.interiorIndex(), timeIdx);
|
||
|
// the permeability per definition aligns with the grid
|
||
|
// we only support diagonal permeability tensor
|
||
|
// and can therefore neglect off-diagonal values
|
||
|
int idx = 0;
|
||
|
Scalar val = 0.0;
|
||
|
for (unsigned i = 0; i < dimWorld; ++ i){
|
||
|
if (std::abs(face.normal()[i]) > val) {
|
||
|
val = std::abs(face.normal()[i]);
|
||
|
idx = i;
|
||
|
}
|
||
|
}
|
||
|
const Scalar& K0 = K0mat[idx][idx];
|
||
|
const Scalar T0 = K0 * ndotDistIn / distSquaredIn;
|
||
|
return T0;
|
||
|
}
|
||
|
|
||
|
template <class Context>
|
||
|
Scalar dofCenterDepth_(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
|
||
|
{
|
||
|
const auto& pos = context.pos(spaceIdx, timeIdx);
|
||
|
return pos[dimWorld-1];
|
||
|
}
|
||
|
|
||
|
Implementation& asImp_()
|
||
|
{ return *static_cast<Implementation*>(this); }
|
||
|
|
||
|
const Implementation& asImp_() const
|
||
|
{ return *static_cast<const Implementation*>(this); }
|
||
|
|
||
|
// the volumetric flux of all phases [m^3/s]
|
||
|
Evaluation volumeFlux_[numPhases];
|
||
|
|
||
|
// the difference in effective pressure between the exterior and the interior degree
|
||
|
// of freedom [Pa]
|
||
|
Evaluation pressureDifference_[numPhases];
|
||
|
|
||
|
// the local indices of the interior and exterior degrees of freedom
|
||
|
unsigned short interiorDofIdx_;
|
||
|
unsigned short exteriorDofIdx_;
|
||
|
short upIdx_[numPhases];
|
||
|
short dnIdx_[numPhases];
|
||
|
};
|
||
|
|
||
|
} // namespace Opm
|
||
|
|
||
|
#endif
|