mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-02-25 18:55:30 -06:00
538 lines
18 KiB
C++
538 lines
18 KiB
C++
|
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
||
|
// vi: set et ts=4 sw=4 sts=4:
|
||
|
/*****************************************************************************
|
||
|
* Copyright (C) 2008-2012 by Andreas Lauser *
|
||
|
* *
|
||
|
* This program is free software: you can redistribute it and/or modify *
|
||
|
* it under the terms of the GNU General Public License as published by *
|
||
|
* the Free Software Foundation, either version 2 of the License, or *
|
||
|
* (at your option) any later version. *
|
||
|
* *
|
||
|
* This program is distributed in the hope that it will be useful, *
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
||
|
* GNU General Public License for more details. *
|
||
|
* *
|
||
|
* You should have received a copy of the GNU General Public License *
|
||
|
* along with this program. If not, see <http://www.gnu.org/licenses/>. *
|
||
|
*****************************************************************************/
|
||
|
/*!
|
||
|
* \file
|
||
|
*
|
||
|
* \copydoc Ewoms::WaterAirProblem
|
||
|
*/
|
||
|
#ifndef EWOMS_WATER_AIR_PROBLEM_HH
|
||
|
#define EWOMS_WATER_AIR_PROBLEM_HH
|
||
|
|
||
|
#include <ewoms/models/pvs/pvsproperties.hh>
|
||
|
|
||
|
#include <opm/material/fluidsystems/H2OAirFluidSystem.hpp>
|
||
|
#include <opm/material/fluidstates/ImmiscibleFluidState.hpp>
|
||
|
#include <opm/material/fluidstates/CompositionalFluidState.hpp>
|
||
|
#include <opm/material/fluidmatrixinteractions/2p/LinearMaterial.hpp>
|
||
|
#include <opm/material/fluidmatrixinteractions/2p/RegularizedBrooksCorey.hpp>
|
||
|
#include <opm/material/fluidmatrixinteractions/2p/EffToAbsLaw.hpp>
|
||
|
#include <opm/material/fluidmatrixinteractions/mp/2pAdapter.hpp>
|
||
|
#include <opm/material/heatconduction/Somerton.hpp>
|
||
|
#include <opm/material/constraintsolvers/ComputeFromReferencePhase.hpp>
|
||
|
|
||
|
#include <dune/grid/io/file/dgfparser/dgfug.hh>
|
||
|
#include <dune/grid/io/file/dgfparser/dgfs.hh>
|
||
|
#include <dune/grid/io/file/dgfparser/dgfyasp.hh>
|
||
|
|
||
|
#include <dune/common/fvector.hh>
|
||
|
#include <dune/common/fmatrix.hh>
|
||
|
|
||
|
#include <sstream>
|
||
|
#include <string>
|
||
|
|
||
|
namespace Ewoms {
|
||
|
|
||
|
template <class TypeTag>
|
||
|
class WaterAirProblem;
|
||
|
|
||
|
namespace Properties {
|
||
|
|
||
|
NEW_TYPE_TAG(WaterAirBaseProblem);
|
||
|
|
||
|
// Set the grid type
|
||
|
SET_TYPE_PROP(WaterAirBaseProblem, Grid, Dune::YaspGrid<2>);
|
||
|
|
||
|
// Set the problem property
|
||
|
SET_TYPE_PROP(WaterAirBaseProblem, Problem, Ewoms::WaterAirProblem<TypeTag>);
|
||
|
|
||
|
// Set the material Law
|
||
|
SET_PROP(WaterAirBaseProblem, MaterialLaw)
|
||
|
{
|
||
|
private:
|
||
|
// define the material law which is parameterized by effective
|
||
|
// saturations
|
||
|
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
|
||
|
typedef Opm::RegularizedBrooksCorey<Scalar> EffMaterialLaw;
|
||
|
|
||
|
// define the material law parameterized by absolute saturations
|
||
|
// which uses the two-phase API
|
||
|
typedef Opm::EffToAbsLaw<EffMaterialLaw> TwoPMaterialLaw;
|
||
|
|
||
|
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
|
||
|
enum { lPhaseIdx = FluidSystem::lPhaseIdx };
|
||
|
|
||
|
public:
|
||
|
// define the type of the generic material law
|
||
|
typedef Opm::TwoPAdapter<lPhaseIdx, TwoPMaterialLaw> type;
|
||
|
};
|
||
|
|
||
|
// Set the heat conduction law
|
||
|
SET_PROP(WaterAirBaseProblem, HeatConductionLaw)
|
||
|
{
|
||
|
private:
|
||
|
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
|
||
|
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
|
||
|
|
||
|
public:
|
||
|
// define the material law parameterized by absolute saturations
|
||
|
typedef Opm::Somerton<FluidSystem, Scalar> type;
|
||
|
};
|
||
|
|
||
|
// Set the fluid system. in this case, we use the one which describes
|
||
|
// air and water
|
||
|
SET_TYPE_PROP(WaterAirBaseProblem, FluidSystem,
|
||
|
Opm::FluidSystems::H2OAir<typename GET_PROP_TYPE(TypeTag, Scalar)>);
|
||
|
|
||
|
// Enable gravity
|
||
|
SET_BOOL_PROP(WaterAirBaseProblem, EnableGravity, true);
|
||
|
|
||
|
// Enable constraints
|
||
|
SET_BOOL_PROP(WaterAirBaseProblem, EnableConstraints, true);
|
||
|
|
||
|
// Use forward differences instead of central differences
|
||
|
SET_INT_PROP(WaterAirBaseProblem, NumericDifferenceMethod, +1);
|
||
|
|
||
|
// Write newton convergence
|
||
|
SET_BOOL_PROP(WaterAirBaseProblem, NewtonWriteConvergence, false);
|
||
|
|
||
|
// The default for the end time of the simulation
|
||
|
SET_SCALAR_PROP(WaterAirBaseProblem, EndTime, 5e3);
|
||
|
|
||
|
// The default for the initial time step size of the simulation
|
||
|
SET_SCALAR_PROP(WaterAirBaseProblem, InitialTimeStepSize, 250);
|
||
|
|
||
|
// The default DGF file to load
|
||
|
SET_STRING_PROP(WaterAirBaseProblem, GridFile, "./grids/waterair.dgf");
|
||
|
}
|
||
|
|
||
|
|
||
|
/*!
|
||
|
* \ingroup VcfvTestProblems
|
||
|
* \brief Non-isothermal gas injection problem where a air
|
||
|
* is injected into a fully water saturated medium.
|
||
|
*
|
||
|
* During buoyancy driven upward migration, the gas passes a
|
||
|
* rectangular high temperature area. This decreases the temperature
|
||
|
* of the high-temperature area and accelerates gas infiltration due
|
||
|
* to the lower viscosity of the gas. (Be aware that the pressure of
|
||
|
* the gas is approximately constant within the lens, so the density
|
||
|
* of the gas is reduced. This more than off-sets the viscosity
|
||
|
* increase of the gas at constant density.)
|
||
|
*
|
||
|
* The domain is sized 40 m times 40 m. The rectangular area with
|
||
|
* increased temperature (380 K) starts at (20 m, 5 m) and ends at (30
|
||
|
* m, 35 m).
|
||
|
*
|
||
|
* For the mass conservation equation, no-flow boundary conditions are
|
||
|
* used on the top and on the bottom of the domain, while free-flow
|
||
|
* conditions apply on the left and the right boundary. Gas is
|
||
|
* injected at bottom from 15 m to 25 m at a rate of 0.001 kg/(s m^2)
|
||
|
* by means if a forced inflow boundary condition.
|
||
|
*
|
||
|
* At the free-flow boundaries, the initial condition for the bulk
|
||
|
* part of the domain is assumed, i. e. hydrostatic pressure, a gas
|
||
|
* saturation of zero and a geothermal temperature gradient of 0.03
|
||
|
* K/m.
|
||
|
*/
|
||
|
template <class TypeTag >
|
||
|
class WaterAirProblem
|
||
|
: public GET_PROP_TYPE(TypeTag, BaseProblem)
|
||
|
{
|
||
|
typedef typename GET_PROP_TYPE(TypeTag, BaseProblem) ParentType;
|
||
|
|
||
|
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
|
||
|
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
|
||
|
typedef typename GridView::Grid Grid;
|
||
|
|
||
|
// copy some indices for convenience
|
||
|
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
|
||
|
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
|
||
|
enum {
|
||
|
numPhases = FluidSystem::numPhases,
|
||
|
|
||
|
// energy related indices
|
||
|
temperatureIdx = Indices::temperatureIdx,
|
||
|
energyEqIdx = Indices::energyEqIdx,
|
||
|
|
||
|
// component indices
|
||
|
H2OIdx = FluidSystem::H2OIdx,
|
||
|
AirIdx = FluidSystem::AirIdx,
|
||
|
|
||
|
// phase indices
|
||
|
lPhaseIdx = FluidSystem::lPhaseIdx,
|
||
|
gPhaseIdx = FluidSystem::gPhaseIdx,
|
||
|
|
||
|
// equation indices
|
||
|
conti0EqIdx = Indices::conti0EqIdx,
|
||
|
|
||
|
// Grid and world dimension
|
||
|
dim = GridView::dimension,
|
||
|
dimWorld = GridView::dimensionworld
|
||
|
};
|
||
|
|
||
|
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
|
||
|
typedef typename GET_PROP_TYPE(TypeTag, BoundaryRateVector) BoundaryRateVector;
|
||
|
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
|
||
|
typedef typename GET_PROP_TYPE(TypeTag, Constraints) Constraints;
|
||
|
typedef typename GET_PROP_TYPE(TypeTag, TimeManager) TimeManager;
|
||
|
|
||
|
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
|
||
|
typedef typename GET_PROP_TYPE(TypeTag, MaterialLawParams) MaterialLawParams;
|
||
|
|
||
|
typedef typename GET_PROP_TYPE(TypeTag, HeatConductionLaw) HeatConductionLaw;
|
||
|
typedef typename GET_PROP_TYPE(TypeTag, HeatConductionLawParams) HeatConductionLawParams;
|
||
|
|
||
|
typedef typename GridView::ctype CoordScalar;
|
||
|
typedef Dune::FieldVector<CoordScalar, dimWorld> GlobalPosition;
|
||
|
|
||
|
typedef Dune::FieldMatrix<Scalar, dimWorld, dimWorld> DimMatrix;
|
||
|
|
||
|
public:
|
||
|
/*!
|
||
|
* \copydoc Doxygen::defaultProblemConstructor
|
||
|
*/
|
||
|
WaterAirProblem(TimeManager &timeManager)
|
||
|
: ParentType(timeManager, GET_PROP_TYPE(TypeTag, GridCreator)::grid().leafView())
|
||
|
{
|
||
|
maxDepth_ = 1000.0; // [m]
|
||
|
eps_ = 1e-6;
|
||
|
|
||
|
FluidSystem::init(/*Tmin=*/275, /*Tmax=*/600, /*nT=*/100,
|
||
|
/*pmin=*/9.5e6, /*pmax=*/10.5e6, /*np=*/200);
|
||
|
|
||
|
layerBottom_ = 22.0;
|
||
|
|
||
|
// intrinsic permeabilities
|
||
|
fineK_ = this->toDimMatrix_(1e-13);
|
||
|
coarseK_ = this->toDimMatrix_(1e-12);
|
||
|
|
||
|
// porosities
|
||
|
finePorosity_ = 0.3;
|
||
|
coarsePorosity_ = 0.3;
|
||
|
|
||
|
// residual saturations
|
||
|
fineMaterialParams_.setSwr(0.2);
|
||
|
fineMaterialParams_.setSnr(0.0);
|
||
|
coarseMaterialParams_.setSwr(0.2);
|
||
|
coarseMaterialParams_.setSnr(0.0);
|
||
|
|
||
|
// parameters for the Brooks-Corey law
|
||
|
fineMaterialParams_.setPe(1e4);
|
||
|
coarseMaterialParams_.setPe(1e4);
|
||
|
fineMaterialParams_.setLambda(2.0);
|
||
|
coarseMaterialParams_.setLambda(2.0);
|
||
|
|
||
|
// parameters for the somerton law of heat conduction
|
||
|
computeHeatCondParams_(fineHeatCondParams_, finePorosity_);
|
||
|
computeHeatCondParams_(coarseHeatCondParams_, coarsePorosity_);
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
* \name Problem parameters
|
||
|
*/
|
||
|
//! \{
|
||
|
|
||
|
/*!
|
||
|
* \copydoc VcfvProblem::name
|
||
|
*/
|
||
|
std::string name() const
|
||
|
{
|
||
|
std::ostringstream oss;
|
||
|
oss << "waterair_" << this->model().name();
|
||
|
if (GET_PROP_VALUE(TypeTag, EnableEnergy))
|
||
|
oss << "_ni";
|
||
|
|
||
|
return oss.str();
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
* \copydoc VcfvMultiPhaseProblem::intrinsicPermeability
|
||
|
*
|
||
|
* In this problem, the upper part of the domain is sightly less
|
||
|
* permeable than the lower one.
|
||
|
*/
|
||
|
template <class Context>
|
||
|
const DimMatrix &intrinsicPermeability(const Context &context, int spaceIdx, int timeIdx) const
|
||
|
{
|
||
|
const GlobalPosition &pos = context.pos(spaceIdx, timeIdx);
|
||
|
if (isFineMaterial_(pos))
|
||
|
return fineK_;
|
||
|
return coarseK_;
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
* \copydoc VcfvMultiPhaseProblem::porosity
|
||
|
*/
|
||
|
template <class Context>
|
||
|
Scalar porosity(const Context &context, int spaceIdx, int timeIdx) const
|
||
|
{
|
||
|
const GlobalPosition &pos = context.pos(spaceIdx, timeIdx);
|
||
|
if (isFineMaterial_(pos))
|
||
|
return finePorosity_;
|
||
|
else
|
||
|
return coarsePorosity_;
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
* \copydoc VcfvMultiPhaseProblem::materialLawParams
|
||
|
*/
|
||
|
template <class Context>
|
||
|
const MaterialLawParams& materialLawParams(const Context &context, int spaceIdx, int timeIdx) const
|
||
|
{
|
||
|
const GlobalPosition &pos = context.pos(spaceIdx, timeIdx);
|
||
|
if (isFineMaterial_(pos))
|
||
|
return fineMaterialParams_;
|
||
|
else
|
||
|
return coarseMaterialParams_;
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
* \copydoc VcfvMultiPhaseProblem::heatCapacitySolid
|
||
|
*
|
||
|
* In this case, we assume the rock-matrix to be granite.
|
||
|
*/
|
||
|
template <class Context>
|
||
|
Scalar heatCapacitySolid(const Context &context, int spaceIdx, int timeIdx) const
|
||
|
{
|
||
|
return
|
||
|
790 // specific heat capacity of granite [J / (kg K)]
|
||
|
* 2700; // density of granite [kg/m^3]
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
* \copydoc VcfvMultiPhaseProblem::heatConductionParams
|
||
|
*/
|
||
|
template <class Context>
|
||
|
const HeatConductionLawParams&
|
||
|
heatConductionParams(const Context &context, int spaceIdx, int timeIdx) const
|
||
|
{
|
||
|
const GlobalPosition &pos = context.pos(spaceIdx, timeIdx);
|
||
|
if (isFineMaterial_(pos))
|
||
|
return fineHeatCondParams_;
|
||
|
return coarseHeatCondParams_;
|
||
|
}
|
||
|
|
||
|
//! \}
|
||
|
|
||
|
/*!
|
||
|
* \name Boundary conditions
|
||
|
*/
|
||
|
//! \{
|
||
|
|
||
|
/*!
|
||
|
* \copydoc VcfvProblem::boundary
|
||
|
*
|
||
|
* For this problem, we inject air at the inlet on the center of
|
||
|
* the lower domain boundary and use a no-flow condition on the
|
||
|
* top boundary and a and a free-flow condition on the left and
|
||
|
* right boundaries of the domain.
|
||
|
*/
|
||
|
template <class Context>
|
||
|
void boundary(BoundaryRateVector &values,
|
||
|
const Context &context,
|
||
|
int spaceIdx, int timeIdx) const
|
||
|
{
|
||
|
const auto &pos = context.cvCenter(spaceIdx, timeIdx);
|
||
|
assert(onLeftBoundary_(pos) ||
|
||
|
onLowerBoundary_(pos) ||
|
||
|
onRightBoundary_(pos) ||
|
||
|
onUpperBoundary_(pos));
|
||
|
|
||
|
if (onInlet_(pos)) {
|
||
|
RateVector massRate(0.0);
|
||
|
massRate[conti0EqIdx + AirIdx] = -1e-3; // [kg/(m^2 s)]
|
||
|
|
||
|
// impose an forced inflow boundary condition on the inlet
|
||
|
values.setMassRate(massRate);
|
||
|
}
|
||
|
else if (onLeftBoundary_(pos) || onRightBoundary_(pos)) {
|
||
|
//int globalIdx = context.elemContext().globalSpaceIndex(context.insideScvIndex(spaceIdx,timeIdx), timeIdx);
|
||
|
|
||
|
Opm::CompositionalFluidState<Scalar, FluidSystem> fs;
|
||
|
initialFluidState_(fs, context, spaceIdx, timeIdx);
|
||
|
|
||
|
// impose an freeflow boundary condition
|
||
|
values.setFreeFlow(context, spaceIdx, timeIdx, fs);
|
||
|
}
|
||
|
else
|
||
|
// no flow on top and bottom
|
||
|
values.setNoFlow();
|
||
|
}
|
||
|
|
||
|
//! \}
|
||
|
|
||
|
/*!
|
||
|
* \name Volume terms
|
||
|
*/
|
||
|
//! \{
|
||
|
|
||
|
/*!
|
||
|
* \copydoc VcfvProblem::initial
|
||
|
*
|
||
|
* For this problem, we set the medium to be fully saturated by
|
||
|
* liquid water and assume hydrostatic pressure.
|
||
|
*/
|
||
|
template <class Context>
|
||
|
void initial(PrimaryVariables &values, const Context &context, int spaceIdx, int timeIdx) const
|
||
|
{
|
||
|
//int globalIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
|
||
|
|
||
|
Opm::CompositionalFluidState<Scalar, FluidSystem> fs;
|
||
|
initialFluidState_(fs, context, spaceIdx, timeIdx);
|
||
|
|
||
|
const auto &matParams = materialLawParams(context, spaceIdx, timeIdx);
|
||
|
values.assignMassConservative(fs, matParams, /*inEquilibrium=*/true);
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
* \copydoc VcfvProblem::constraints
|
||
|
*
|
||
|
* In this problem, constraints are used to keep the temperature
|
||
|
* of the finite-volumes which are closest to the inlet constant.
|
||
|
*/
|
||
|
template <class Context>
|
||
|
void constraints(Constraints &constraints,
|
||
|
const Context &context,
|
||
|
int spaceIdx, int timeIdx) const
|
||
|
{
|
||
|
const auto &pos = context.pos(spaceIdx, timeIdx);
|
||
|
|
||
|
if (onInlet_(pos)) {
|
||
|
constraints.setConstraint(temperatureIdx, energyEqIdx, 380);;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
* \copydoc VcfvProblem::source
|
||
|
*
|
||
|
* For this problem, the source term of all components is 0
|
||
|
* everywhere.
|
||
|
*/
|
||
|
template <class Context>
|
||
|
void source(RateVector &rate,
|
||
|
const Context &context, int spaceIdx, int timeIdx) const
|
||
|
{ rate = 0; }
|
||
|
|
||
|
//! \}
|
||
|
|
||
|
|
||
|
private:
|
||
|
bool onLeftBoundary_(const GlobalPosition &pos) const
|
||
|
{ return pos[0] < eps_; }
|
||
|
|
||
|
bool onRightBoundary_(const GlobalPosition &pos) const
|
||
|
{ return pos[0] > this->bboxMax()[0] - eps_; }
|
||
|
|
||
|
bool onLowerBoundary_(const GlobalPosition &pos) const
|
||
|
{ return pos[1] < eps_; }
|
||
|
|
||
|
bool onUpperBoundary_(const GlobalPosition &pos) const
|
||
|
{ return pos[1] > this->bboxMax()[1] - eps_; }
|
||
|
|
||
|
bool onInlet_(const GlobalPosition &pos) const
|
||
|
{ return onLowerBoundary_(pos) && (15.0 < pos[0]) && (pos[0] < 25.0); }
|
||
|
|
||
|
bool inHighTemperatureRegion_(const GlobalPosition &pos) const
|
||
|
{ return (20 < pos[0]) && (pos[0] < 30) && (pos[1] < 30); }
|
||
|
|
||
|
template <class Context, class FluidState>
|
||
|
void initialFluidState_(FluidState &fs, const Context &context, int spaceIdx, int timeIdx) const
|
||
|
{
|
||
|
const GlobalPosition &pos = context.pos(spaceIdx, timeIdx);
|
||
|
|
||
|
Scalar densityW = 1000.0;
|
||
|
fs.setPressure(lPhaseIdx, 1e5 + (maxDepth_ - pos[1])*densityW*9.81);
|
||
|
fs.setSaturation(lPhaseIdx, 1.0);
|
||
|
fs.setMoleFraction(lPhaseIdx, H2OIdx, 1.0);
|
||
|
fs.setMoleFraction(lPhaseIdx, AirIdx, 0.0);
|
||
|
|
||
|
if (inHighTemperatureRegion_(pos))
|
||
|
fs.setTemperature(380);
|
||
|
else
|
||
|
fs.setTemperature(283.0 + (maxDepth_ - pos[1])*0.03);
|
||
|
|
||
|
// set the gas saturation and pressure
|
||
|
fs.setSaturation(gPhaseIdx, 0);
|
||
|
Scalar pc[numPhases];
|
||
|
const auto &matParams = materialLawParams(context, spaceIdx, timeIdx);
|
||
|
MaterialLaw::capillaryPressures(pc, matParams, fs);
|
||
|
fs.setPressure(gPhaseIdx, fs.pressure(lPhaseIdx) + (pc[gPhaseIdx] - pc[lPhaseIdx]));
|
||
|
|
||
|
typename FluidSystem::ParameterCache paramCache;
|
||
|
typedef Opm::ComputeFromReferencePhase<Scalar, FluidSystem> CFRP;
|
||
|
CFRP::solve(fs, paramCache, lPhaseIdx, /*setViscosity=*/false, /*setEnthalpy=*/true);
|
||
|
}
|
||
|
|
||
|
void computeHeatCondParams_(HeatConductionLawParams ¶ms, Scalar poro)
|
||
|
{
|
||
|
Scalar lambdaGranite = 2.8; // [W / (K m)]
|
||
|
|
||
|
// create a Fluid state which has all phases present
|
||
|
Opm::ImmiscibleFluidState<Scalar, FluidSystem> fs;
|
||
|
fs.setTemperature(293.15);
|
||
|
for (int phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
||
|
fs.setPressure(phaseIdx, 1.0135e5);
|
||
|
}
|
||
|
|
||
|
typename FluidSystem::ParameterCache paramCache;
|
||
|
paramCache.updateAll(fs);
|
||
|
for (int phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
||
|
Scalar rho = FluidSystem::density(fs, paramCache, phaseIdx);
|
||
|
fs.setDensity(phaseIdx, rho);
|
||
|
}
|
||
|
|
||
|
for (int phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
||
|
Scalar lambdaSaturated;
|
||
|
if (FluidSystem::isLiquid(phaseIdx)) {
|
||
|
Scalar lambdaFluid =
|
||
|
FluidSystem::thermalConductivity(fs, paramCache, phaseIdx);
|
||
|
lambdaSaturated = std::pow(lambdaGranite, (1-poro)) + std::pow(lambdaFluid, poro);
|
||
|
}
|
||
|
else
|
||
|
lambdaSaturated = std::pow(lambdaGranite, (1-poro));
|
||
|
|
||
|
params.setFullySaturatedLambda(phaseIdx, lambdaSaturated);
|
||
|
if (!FluidSystem::isLiquid(phaseIdx))
|
||
|
params.setVacuumLambda(lambdaSaturated);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
bool isFineMaterial_(const GlobalPosition &pos) const
|
||
|
{ return pos[dim-1] > layerBottom_; }
|
||
|
|
||
|
DimMatrix fineK_;
|
||
|
DimMatrix coarseK_;
|
||
|
Scalar layerBottom_;
|
||
|
|
||
|
Scalar finePorosity_;
|
||
|
Scalar coarsePorosity_;
|
||
|
|
||
|
MaterialLawParams fineMaterialParams_;
|
||
|
MaterialLawParams coarseMaterialParams_;
|
||
|
|
||
|
HeatConductionLawParams fineHeatCondParams_;
|
||
|
HeatConductionLawParams coarseHeatCondParams_;
|
||
|
|
||
|
Scalar maxDepth_;
|
||
|
Scalar eps_;
|
||
|
};
|
||
|
} //end namespace
|
||
|
|
||
|
#endif
|