opm-simulators/opm/simulators/utils/GridDataOutput.hpp

456 lines
15 KiB
C++
Raw Normal View History

// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
/*
Copyright 2023 Inria, BretagneAtlantique Research Center
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_SIM_MESH_DATA2_HPP
#define OPM_SIM_MESH_DATA2_HPP
#include <sstream>
#include <dune/grid/common/rangegenerators.hh>
#include <dune/grid/io/file/vtk/common.hh>
/** @file
@brief Allows model geometry data to be passed to external code - via a copy direct to input pointers.
This data extractor provides the full set of vertices (corresponding to Dune::Partition::all) and then
allows a user to specify Dune sub-partitions to get the references into the vertex array and element
(aka cell) types for the sub-partition. This allows the full set of verticies to be reused for
visualisation of the various sub-partitions, at the expense of copying all the vertices. Typically
a user is interested in the interiorBoarder elements which make use of the bulk (~80%) of the vertices.
This saves having to renumber the indexes to the vertices for the sub-partitions.
The vertex data can be retrieved as seperate x, y and z arrays, or as a single array of structures,
or as a single structure of arrays based
Example:
// From the opm-simulators repository
#include <opm/simulators/utils/GridDataOutput.hpp>
// N.B. does not seem to be able to be allocated with new operator.
Opm::GridDataOutput::SimMeshDataAccessor geomData(gridView, Dune::Partition::interior ) ;
geomData.printGridDetails() ;
// example using seperate x, y and z arrays
int nvert = geomData.getNVertices() ;
double * x_vert = new double[nvert] ;
double * y_vert = new double[nvert] ;
double * z_vert = new double[nvert] ;
geomData.writeGridPoints(x_vert,y_vert,z_vert) ;
... do something with vertex data x_vert, y_vert and z_vert ....
free [] x_vert;
free [] y_vert;
free [] z_vert;
// example using AOS
double * xyz_vert_aos = new double[nvert*3] ;
geomData.writeGridPoints_SOA(xyz_vert_aos) ;
... do something with vertex data xyz_vert_aos....
free [] xyz_vert_aos;
*/
namespace Opm::GridDataOutput
{
/**
* Allows selection of order of verticies in writeConnectivity()
*/
enum ConnectivityVertexOrder { DUNE = 0 , VTK = 1 } ;
template< class GridView, unsigned int partitions >
class SimMeshDataAccessor {
public:
/**
* @brief Construct a SimMeshDataAccessor working on a specific GridView and specialize to a Dune::PartitionSet<>.
*
* @param gridView The gridView
* @param PartitionSet<> the set of cells from which to extract geometric data
*
* The PartitionSet of the data can be specified from one of:
* Dune::Partitions::all
* Dune::Partitions::interior
* Dune::Partitions::border
* Dune::Partitions::overlap
* Dune::Partitions::front
* Dune::Partitions::ghost
* Dune::Partitions::interiorBorder
* Dune::Partitions::interiorBorderOverlap
* Dune::Partitions::interiorBorderOverlapFront
* Dune::Partitions::all
*
* N.B. To visualise 'field' data on the extracted grid mesh then the field variable
* should contain at least as many vlaues as the mesh has cells (ncells_) or vertices (nvertices_)
* depending on if data is cell centred or vertex centred, respectively.
*
* As we are templated on the Dune::PartitionSet<partitions>, values for ncorners_, nvertices_ and ncells_ cannot change
*
* This class does not work with grids containing polyhedral cells (well, it has not been tested
* with this kind of grid data). The user should call polyhedralCellPresent() to test if polyhedral
* cells are present and decide what they want to do before copying data using the data accessor methods.
*/
explicit SimMeshDataAccessor ( const GridView &gridView,
Dune::PartitionSet<partitions> dunePartition)
: gridView_( gridView ),
dunePartition_(dunePartition)
{
dimw_ = GridView::dimension ; // this is an enum
partition_value_ = dunePartition.value ;
countEntities() ;
}
//! destructor
~SimMeshDataAccessor ()
{
}
/**
Checks for cells that have polyhedral type within the current partition of cells
Returns true if a polyhedral sell is found. If this is the case then this partition
is not going to be available for visualisation as this class does not yet handle
polyhedral cells.
*/
bool polyhedralCellPresent()
{
for (const auto& cit : elements(gridView_, dunePartition_))
{
auto corner_geom = cit.geometry() ;
if( Dune::VTK::geometryType( corner_geom.type() ) == Dune::VTK::polyhedron )
{
return true ;
}
}
return false;
}
/**
Count the vertices, cells and corners.
Count all the vertices ( the Dune::Partitions::all partition ) as then we do not need to renumber
the vertices as all the subsets use references to the full set.
*/
void countEntities( )
{
// We include all the vertices for this ranks partition
const auto& vert_partition_it = vertices(gridView_, Dune::Partitions::all);
nvertices_ = std::distance(vert_partition_it.begin(), vert_partition_it.end());
const auto& cell_partition_it = elements(gridView_, dunePartition_);
ncells_ = std::distance(cell_partition_it.begin(), cell_partition_it.end());
ncorners_ = 0 ;
for (const auto& cit : cell_partition_it)
{
auto corner_geom = cit.geometry() ;
ncorners_ += corner_geom.corners() ;
}
}
/**
Write the positions of vertices - directly to the pointers given in paramaters
Returns the number of vertices written
*/
template <typename T>
long writeGridPoints( T* x_inout, T* y_inout, T* z_inout )
{
long i = 0 ;
if (dimw_ == 3) {
for (const auto& vit : vertices(gridView_, Dune::Partitions::all) )
{
// if (i < nvertices_) // As we are templated on the Dune::PartitionSet<partitions>, this cannot change
auto xyz_local = vit.geometry().corner(0); // verticies only have one corner
x_inout[i] = static_cast<T>(xyz_local[0]) ;
y_inout[i] = static_cast<T>(xyz_local[1]) ;
z_inout[i] = static_cast<T>(xyz_local[2]) ;
i++ ;
}
} else if (dimw_ == 2) {
for (const auto& vit : vertices(gridView_, Dune::Partitions::all) )
{
// if (i < nvertices_) // As we are templated on the Dune::PartitionSet<partitions>, this cannot change
auto xyz_local = vit.geometry().corner(0); // verticies only have one corner
x_inout[i] = static_cast<T>(xyz_local[0]) ;
y_inout[i] = static_cast<T>(xyz_local[1]) ;
z_inout[i] = static_cast<T>(0.0);
i++ ;
}
}
return i ;
}
/**
Write positions of vertices as array of structures : x,y,z,x,y,z,x,y,z,...
Returns the number of vertices written
*/
template <typename T>
long writeGridPoints_AOS( T* xyz_inout )
{
long i = 0 ;
if (dimw_ == 3) {
for (const auto& vit : vertices(gridView_, Dune::Partitions::all))
{
auto xyz_local = vit.geometry().corner(0);
xyz_inout[i++] = static_cast<T>(xyz_local[0]) ;
xyz_inout[i++] = static_cast<T>(xyz_local[1]) ;
xyz_inout[i++] = static_cast<T>(xyz_local[2]) ;
}
} else if (dimw_ == 2) {
for (const auto& vit : vertices(gridView_, Dune::Partitions::all))
{
auto xyz_local = vit.geometry().corner(0);
xyz_inout[i++] = static_cast<T>(xyz_local[0]) ;
xyz_inout[i++] = static_cast<T>(xyz_local[1]) ;
xyz_inout[i++] = static_cast<T>(0.0) ;
}
}
return ( (i) / 3 );
}
/**
Write positions of vertices as structure of arrays : x,x,x,...,y,y,y,...,z,z,z,...
Returns the number of vertices written
*/
template <typename T>
long writeGridPoints_SOA( T* xyz_inout )
{
long i = 0 ;
// Get offsets into structure
T * xyz_inout_y = xyz_inout + nvertices_ ;
T * xyz_inout_z = xyz_inout + (2*nvertices_) ;
if (dimw_ == 3) {
for (const auto& vit : vertices(gridView_, Dune::Partitions::all))
{
auto xyz_local = vit.geometry().corner(0);
xyz_inout[i] = static_cast<T>(xyz_local[0]) ;
xyz_inout_y[i]= static_cast<T>(xyz_local[1]) ;
xyz_inout_z[i] = static_cast<T>(xyz_local[2]) ;
i++ ;
}
} else if (dimw_ == 2) {
for (const auto& vit : vertices(gridView_, Dune::Partitions::all))
{
auto xyz_local = vit.geometry().corner(0);
xyz_inout[i] = static_cast<T>(xyz_local[0]) ;
xyz_inout_y[i]= static_cast<T>(xyz_local[1]) ;
xyz_inout_z[i] = static_cast<T>(0.0);
i++ ;
}
}
return (i) ;
}
/**
* Write the connectivity array - directly to the pointer given in paramater 1
Reorders the indecies as selected either in DUNE order or VTK order.
Returns the number of corner indices written.
*/
template <typename I>
long writeConnectivity(I * connectivity_inout, ConnectivityVertexOrder whichOrder)
{
long i = 0 ;
if ( whichOrder == DUNE ) {
// DUNE order
for (const auto& cit : elements(gridView_, dunePartition_))
{
auto cell_corners = cit.geometry().corners() ;
for( auto vx = 0; vx < cell_corners; ++ vx )
{
const int vxIdx = gridView_.indexSet().subIndex( cit, vx, 3 );
connectivity_inout[i + vx] = vxIdx ;
}
i += cell_corners ;
}
} else {
// VTK order
for (const auto& cit : elements(gridView_, dunePartition_))
{
auto cell_corners = cit.geometry().corners() ;
for( auto vx = 0; vx < cell_corners; ++ vx )
{
const int vxIdx = gridView_.indexSet().subIndex( cit, vx, 3 );
int vtkOrder ;
vtkOrder = Dune::VTK::renumber(cit.type(), vx) ;
connectivity_inout[i + vtkOrder] = vxIdx ;
}
i += cell_corners ;
}
}
return (i) ;
}
/**
* Write the offsets values - directly to the pointer given in paramater 1
Returns the number of offset values written, which should be 1 greater than ncells_
or -1 if an error was detected
*/
template <typename I>
long writeOffsetsCells( I* offsets_inout )
{
long i = 1 ;
offsets_inout[0] = 0 ;
for (const auto& cit : elements(gridView_, dunePartition_))
{
auto cell_corners = cit.geometry().corners() ;
offsets_inout[i] = offsets_inout[i-1] + cell_corners ;
i++ ;
}
return (i) ; // This should be 1 greater than ncells_
}
/**
* Write the Cell types array - directly to the pointer given in paramater 1
*/
template <typename I>
long writeCellTypes( I* types_inout)
{
int i = 0 ;
for (const auto& cit : elements(gridView_, dunePartition_))
{
I vtktype = static_cast<I>(Dune::VTK::geometryType(cit.type()));
types_inout[i++] = vtktype ;
}
return (i) ;
}
std::string getPartitionTypeString ( )
{
if (this->dunePartition_ == Dune::Partitions::all)
return (std::string("Dune::Partitions::all")) ;
if (this->dunePartition_ == Dune::Partitions::interior)
return (std::string("Dune::Partitions::interior")) ;
if (this->dunePartition_ == Dune::Partitions::interiorBorder)
return (std::string("Dune::Partitions::interiorBorder")) ;
if (this->dunePartition_ == Dune::Partitions::interiorBorderOverlap)
return (std::string("Dune::Partitions::interiorBorderOverlap")) ;
if (this->dunePartition_ == Dune::Partitions::front)
return (std::string("Dune::Partitions::front")) ;
if (this->dunePartition_ == Dune::Partitions::interiorBorderOverlapFront)
return (std::string("Dune::Partitions::InteriorBorderOverlapFront")) ;
if (this->dunePartition_ == Dune::Partitions::border)
return (std::string("Dune::Partitions::border")) ;
if (this->dunePartition_ == Dune::Partitions::ghost)
return (std::string("Dune::Partitions::ghost")) ;
return (std::string("Unknown Dune::PartitionSet<>")) ;
}
Dune::PartitionSet<partitions> getPartition ( void )
{
return ( this->dunePartition_ ) ;
}
void printGridDetails()
{
std::cout << "Dune Partition = " << partition_value_ << ", " << getPartitionTypeString() << std::endl ;
printNCells() ;
printNVertices() ;
printNCorners() ;
}
void printNCells()
{
std::cout << "ncells = " << ncells_ << std::endl ;
}
void printNVertices()
{
std::cout << "nvertices = " << nvertices_ << std::endl ;
}
void printNCorners()
{
std::cout << "ncorners = " << ncorners_ << std::endl ;
}
int getNCells()
{
return(ncells_) ;
}
int getNVertices()
{
return(nvertices_) ;
}
int getNCorners()
{
return(ncorners_) ;
}
std::string getError()
{
return error_strm_.str() ;
}
void clearError()
{
error_strm_.str("") ;
}
bool hasError()
{
if ( error_strm_.str().length() > 0 )
return true ;
else
return false ;
}
protected:
GridView gridView_; // the grid
Dune::PartitionSet<partitions> dunePartition_ ;
unsigned int partition_value_ ;
/**
Current partition grid information
*/
int ncells_;
/**
Current partition grid information
*/
int nvertices_;
/**
Current partition grid information
*/
int ncorners_;
int dimw_ ; // dimensions of the input grid
private:
std::stringstream error_strm_ ;
};
}
#endif