opm-simulators/opm/autodiff/AquiferCarterTracy.hpp

428 lines
19 KiB
C++
Raw Normal View History

/*
Copyright 2017 TNO - Heat Transfer & Fluid Dynamics, Modelling & Optimization of the Subsurface
Copyright 2017 Statoil ASA.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_AQUIFERCT_HEADER_INCLUDED
#define OPM_AQUIFERCT_HEADER_INCLUDED
#include <opm/parser/eclipse/EclipseState/AquiferCT.hpp>
2018-01-04 08:50:04 -06:00
#include <opm/parser/eclipse/EclipseState/Aquancon.hpp>
#include <opm/autodiff/BlackoilAquiferModel.hpp>
#include <opm/common/utility/numeric/linearInterpolation.hpp>
#include <opm/material/densead/Math.hpp>
#include <opm/material/densead/Evaluation.hpp>
2018-01-04 08:50:04 -06:00
#include <opm/material/fluidstates/BlackOilFluidState.hpp>
#include <vector>
2018-01-04 08:50:04 -06:00
#include <algorithm>
#include <unordered_map>
namespace Opm
{
template<typename TypeTag>
class AquiferCarterTracy
{
public:
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, Indices) BlackoilIndices;
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
typedef typename GET_PROP_TYPE(TypeTag, IntensiveQuantities) IntensiveQuantities;
enum { enableTemperature = GET_PROP_VALUE(TypeTag, EnableTemperature) };
enum { enableEnergy = GET_PROP_VALUE(TypeTag, EnableEnergy) };
static const int numEq = BlackoilIndices::numEq;
typedef double Scalar;
typedef DenseAd::Evaluation<double, /*size=*/numEq> Eval;
typedef Opm::BlackOilFluidState<Eval, FluidSystem, enableTemperature, enableEnergy, BlackoilIndices::gasEnabled, BlackoilIndices::numPhases> FluidState;
static const auto waterCompIdx = FluidSystem::waterCompIdx;
static const auto waterPhaseIdx = FluidSystem::waterPhaseIdx;
2018-01-04 08:50:04 -06:00
2018-04-26 09:22:26 -05:00
AquiferCarterTracy( const AquiferCT::AQUCT_data& aquct_data,
const Aquancon::AquanconOutput& connection,
const std::unordered_map<int, int>& cartesian_to_compressed,
const Simulator& ebosSimulator)
2018-10-30 09:50:36 -05:00
: ebos_simulator_ (ebosSimulator)
, aquct_data_ (aquct_data)
, cartesian_to_compressed_(cartesian_to_compressed)
, connection_(connection)
{}
void initialSolutionApplied()
{
initQuantities(connection_);
}
void beginTimeStep()
{
2018-10-30 09:50:36 -05:00
ElementContext elemCtx(ebos_simulator_);
auto elemIt = ebos_simulator_.gridView().template begin<0>();
const auto& elemEndIt = ebos_simulator_.gridView().template end<0>();
for (; elemIt != elemEndIt; ++elemIt) {
const auto& elem = *elemIt;
elemCtx.updatePrimaryStencil(elem);
int cellIdx = elemCtx.globalSpaceIndex(0, 0);
2018-10-30 09:50:36 -05:00
int idx = cellToConnectionIdx_[cellIdx];
if (idx < 0)
continue;
elemCtx.updateIntensiveQuantities(0);
const auto& iq = elemCtx.intensiveQuantities(0, 0);
2018-10-30 09:50:36 -05:00
pressure_previous_[idx] = Opm::getValue(iq.fluidState().pressure(waterPhaseIdx));
}
}
template <class Context>
void addToSource(RateVector& rates, const Context& context, unsigned spaceIdx, unsigned timeIdx)
{
unsigned cellIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
2018-10-30 09:50:36 -05:00
int idx = cellToConnectionIdx_[cellIdx];
if (idx < 0)
return;
// We are dereferencing the value of IntensiveQuantities because cachedIntensiveQuantities return a const pointer to
// IntensiveQuantities of that particular cell_id
const IntensiveQuantities intQuants = context.intensiveQuantities(spaceIdx, timeIdx);
// This is the pressure at td + dt
2018-10-30 09:50:36 -05:00
updateCellPressure(pressure_current_,idx,intQuants);
updateCellDensity(idx,intQuants);
calculateInflowRate(idx, context.simulator());
rates[BlackoilIndices::conti0EqIdx + FluidSystem::waterCompIdx] +=
2018-10-30 09:50:36 -05:00
Qai_[idx]/context.dofVolume(spaceIdx, timeIdx);
}
void endTimeStep()
{
for (const auto& Qai: Qai_) {
2018-10-30 09:50:36 -05:00
W_flux_ += Qai*ebos_simulator_.timeStepSize();
}
}
2018-01-04 08:50:04 -06:00
private:
2018-10-30 09:50:36 -05:00
const Simulator& ebos_simulator_;
// Grid variables
2018-10-30 09:50:36 -05:00
std::vector<size_t> cell_idx_;
2018-01-04 08:50:04 -06:00
std::vector<Scalar> faceArea_connected_;
// Quantities at each grid id
std::vector<Scalar> cell_depth_;
2018-04-26 09:22:26 -05:00
std::vector<Scalar> pressure_previous_;
2018-01-04 08:50:04 -06:00
std::vector<Eval> pressure_current_;
std::vector<Eval> Qai_;
std::vector<Eval> rhow_;
std::vector<Scalar> alphai_;
// Variables constants
2018-04-26 09:22:26 -05:00
const AquiferCT::AQUCT_data aquct_data_;
Scalar mu_w_; //water viscosity
Scalar beta_; // Influx constant
Scalar Tc_; // Time constant
Scalar pa0_; // initial aquifer pressure
2018-04-26 09:22:26 -05:00
2018-10-30 09:50:36 -05:00
Eval W_flux_;
const std::unordered_map<int, int>& cartesian_to_compressed_;
Scalar gravity_() const
2018-10-30 09:50:36 -05:00
{ return ebos_simulator_.problem().gravity()[2]; }
2018-04-26 09:22:26 -05:00
inline void getInfluenceTableValues(Scalar& pitd, Scalar& pitd_prime, const Scalar& td)
2018-01-04 08:50:04 -06:00
{
// We use the opm-common numeric linear interpolator
2018-04-26 09:22:26 -05:00
pitd = Opm::linearInterpolation(aquct_data_.td, aquct_data_.pi, td);
pitd_prime = Opm::linearInterpolationDerivative(aquct_data_.td, aquct_data_.pi, td);
2018-01-04 08:50:04 -06:00
}
2018-04-26 09:22:26 -05:00
inline void initQuantities(const Aquancon::AquanconOutput& connection)
{
2018-01-04 08:50:04 -06:00
// We reset the cumulative flux at the start of any simulation, so, W_flux = 0
2018-10-30 09:50:36 -05:00
W_flux_ = 0.;
2018-01-04 08:50:04 -06:00
// We next get our connections to the aquifer and initialize these quantities using the initialize_connections function
2018-04-26 09:22:26 -05:00
initializeConnections(connection);
calculateAquiferCondition();
2018-01-04 08:50:04 -06:00
2018-04-26 09:22:26 -05:00
calculateAquiferConstants();
2018-10-30 09:50:36 -05:00
pressure_previous_.resize(cell_idx_.size(), 0.);
pressure_current_.resize(cell_idx_.size(), 0.);
Qai_.resize(cell_idx_.size(), 0.0);
}
2018-04-26 09:22:26 -05:00
inline void updateCellPressure(std::vector<Eval>& pressure_water, const int idx, const IntensiveQuantities& intQuants)
{
const auto& fs = intQuants.fluidState();
pressure_water.at(idx) = fs.pressure(waterPhaseIdx);
}
2018-04-26 09:22:26 -05:00
inline void updateCellPressure(std::vector<Scalar>& pressure_water, const int idx, const IntensiveQuantities& intQuants)
{
const auto& fs = intQuants.fluidState();
2018-04-26 09:22:26 -05:00
pressure_water.at(idx) = fs.pressure(waterPhaseIdx).value();
}
inline void updateCellDensity(const int idx, const IntensiveQuantities& intQuants)
{
const auto& fs = intQuants.fluidState();
rhow_.at(idx) = fs.density(waterPhaseIdx);
}
inline Scalar dpai(int idx)
{
Scalar dp = pa0_ + rhow_.at(idx).value()*gravity_()*(cell_depth_.at(idx) - aquct_data_.d0) - pressure_previous_.at(idx);
return dp;
}
2018-01-04 08:50:04 -06:00
// This function implements Eqs 5.8 and 5.9 of the EclipseTechnicalDescription
inline void calculateEqnConstants(Scalar& a, Scalar& b, const int idx, const Simulator& simulator)
{
const Scalar td_plus_dt = (simulator.timeStepSize() + simulator.time()) / Tc_;
const Scalar td = simulator.time() / Tc_;
Scalar PItdprime = 0.;
Scalar PItd = 0.;
2018-04-26 09:22:26 -05:00
getInfluenceTableValues(PItd, PItdprime, td_plus_dt);
2018-10-30 09:50:36 -05:00
a = 1.0/Tc_ * ( (beta_ * dpai(idx)) - (W_flux_.value() * PItdprime) ) / ( PItd - td*PItdprime );
2018-04-26 09:22:26 -05:00
b = beta_ / (Tc_ * ( PItd - td*PItdprime));
}
// This function implements Eq 5.7 of the EclipseTechnicalDescription
inline void calculateInflowRate(int idx, const Simulator& simulator)
{
Scalar a, b;
calculateEqnConstants(a,b,idx,simulator);
2018-04-26 09:22:26 -05:00
Qai_.at(idx) = alphai_.at(idx)*( a - b * ( pressure_current_.at(idx) - pressure_previous_.at(idx) ) );
2018-01-04 08:50:04 -06:00
}
2018-04-26 09:22:26 -05:00
inline void calculateAquiferConstants()
2018-01-04 08:50:04 -06:00
{
2018-04-26 09:22:26 -05:00
// We calculate the influx constant
beta_ = aquct_data_.c2 * aquct_data_.h
* aquct_data_.theta * aquct_data_.phi_aq
* aquct_data_.C_t
* aquct_data_.r_o * aquct_data_.r_o;
// We calculate the time constant
Tc_ = mu_w_ * aquct_data_.phi_aq
* aquct_data_.C_t
2018-04-26 09:22:26 -05:00
* aquct_data_.r_o * aquct_data_.r_o
/ ( aquct_data_.k_a * aquct_data_.c1 );
2018-01-04 08:50:04 -06:00
}
template<class faceCellType, class ugridType>
inline const double getFaceArea(const faceCellType& faceCells, const ugridType& ugrid,
const int faceIdx, const int idx,
const Aquancon::AquanconOutput& connection) const
{
// Check now if the face is outside of the reservoir, or if it adjoins an inactive cell
// Do not make the connection if the product of the two cellIdx > 0. This is because the
// face is within the reservoir/not connected to boundary. (We still have yet to check for inactive cell adjoining)
double faceArea = 0.;
const auto cellNeighbour0 = faceCells(faceIdx,0);
const auto cellNeighbour1 = faceCells(faceIdx,1);
const auto defaultFaceArea = Opm::UgGridHelpers::faceArea(ugrid, faceIdx);
const auto calculatedFaceArea = (!connection.influx_coeff.at(idx))?
defaultFaceArea :
*(connection.influx_coeff.at(idx));
faceArea = (cellNeighbour0 * cellNeighbour1 > 0)? 0. : calculatedFaceArea;
if (cellNeighbour1 == 0){
faceArea = (cellNeighbour0 < 0)? faceArea : 0.;
}
else if (cellNeighbour0 == 0){
faceArea = (cellNeighbour1 < 0)? faceArea : 0.;
}
return faceArea;
}
2018-01-04 08:50:04 -06:00
// This function is used to initialize and calculate the alpha_i for each grid connection to the aquifer
2018-04-26 09:22:26 -05:00
inline void initializeConnections(const Aquancon::AquanconOutput& connection)
2018-01-04 08:50:04 -06:00
{
2018-10-30 09:50:36 -05:00
const auto& eclState = ebos_simulator_.vanguard().eclState();
const auto& ugrid = ebos_simulator_.vanguard().grid();
2018-01-04 08:50:04 -06:00
const auto& grid = eclState.getInputGrid();
2018-10-30 09:50:36 -05:00
cell_idx_ = connection.global_index;
auto globalCellIdx = ugrid.globalCell();
2018-01-04 08:50:04 -06:00
2018-10-30 09:50:36 -05:00
assert( cell_idx_ == connection.global_index);
assert( (cell_idx_.size() <= connection.influx_coeff.size()) );
2018-01-04 08:50:04 -06:00
assert( (connection.influx_coeff.size() == connection.influx_multiplier.size()) );
assert( (connection.influx_multiplier.size() == connection.reservoir_face_dir.size()) );
// We hack the cell depth values for now. We can actually get it from elementcontext pos
2018-10-30 09:50:36 -05:00
cell_depth_.resize(cell_idx_.size(), aquct_data_.d0);
alphai_.resize(cell_idx_.size(), 1.0);
faceArea_connected_.resize(cell_idx_.size(),0.0);
2018-01-04 08:50:04 -06:00
auto cell2Faces = Opm::UgGridHelpers::cell2Faces(ugrid);
auto faceCells = Opm::UgGridHelpers::faceCells(ugrid);
2018-01-04 08:50:04 -06:00
// Translate the C face tag into the enum used by opm-parser's TransMult class
Opm::FaceDir::DirEnum faceDirection;
// denom_face_areas is the sum of the areas connected to an aquifer
Scalar denom_face_areas = 0.;
2018-10-30 09:50:36 -05:00
cellToConnectionIdx_.resize(ebos_simulator_.gridView().size(/*codim=*/0), -1);
for (size_t idx = 0; idx < cell_idx_.size(); ++idx)
2018-01-04 08:50:04 -06:00
{
const int cell_index = cartesian_to_compressed_.at(cell_idx_[idx]);
cellToConnectionIdx_[cell_index] = idx;
const auto cellFacesRange = cell2Faces[cell_index];
2018-01-04 08:50:04 -06:00
for(auto cellFaceIter = cellFacesRange.begin(); cellFaceIter != cellFacesRange.end(); ++cellFaceIter)
{
// The index of the face in the compressed grid
const int faceIdx = *cellFaceIter;
// the logically-Cartesian direction of the face
const int faceTag = Opm::UgGridHelpers::faceTag(ugrid, cellFaceIter);
2018-04-26 09:22:26 -05:00
switch(faceTag)
{
case 0: faceDirection = Opm::FaceDir::XMinus;
break;
case 1: faceDirection = Opm::FaceDir::XPlus;
break;
case 2: faceDirection = Opm::FaceDir::YMinus;
break;
case 3: faceDirection = Opm::FaceDir::YPlus;
break;
case 4: faceDirection = Opm::FaceDir::ZMinus;
break;
case 5: faceDirection = Opm::FaceDir::ZPlus;
break;
default: OPM_THROW(Opm::NumericalIssue,"Initialization of Aquifer Carter Tracy problem. Make sure faceTag is correctly defined");
}
2018-01-04 08:50:04 -06:00
if (faceDirection == connection.reservoir_face_dir.at(idx))
{
faceArea_connected_.at(idx) = getFaceArea(faceCells, ugrid, faceIdx, idx, connection);
denom_face_areas += ( connection.influx_multiplier.at(idx) * faceArea_connected_.at(idx) );
2018-01-04 08:50:04 -06:00
}
}
2018-10-30 09:50:36 -05:00
auto cellCenter = grid.getCellCenter(cell_idx_.at(idx));
2018-01-04 08:50:04 -06:00
cell_depth_.at(idx) = cellCenter[2];
}
const double eps_sqrt = std::sqrt(std::numeric_limits<double>::epsilon());
2018-10-30 09:50:36 -05:00
for (size_t idx = 0; idx < cell_idx_.size(); ++idx)
2018-01-04 08:50:04 -06:00
{
alphai_.at(idx) = (denom_face_areas < eps_sqrt)? // Prevent no connection NaNs due to division by zero
0.
: ( connection.influx_multiplier.at(idx) * faceArea_connected_.at(idx) )/denom_face_areas;
2018-01-04 08:50:04 -06:00
}
}
2018-04-26 09:22:26 -05:00
inline void calculateAquiferCondition()
2018-01-04 08:50:04 -06:00
{
2018-04-26 09:22:26 -05:00
int pvttableIdx = aquct_data_.pvttableID - 1;
2018-10-30 09:50:36 -05:00
rhow_.resize(cell_idx_.size(),0.);
if (!aquct_data_.p0)
2018-04-26 09:22:26 -05:00
{
pa0_ = calculateReservoirEquilibrium();
}
else
2018-01-04 08:50:04 -06:00
{
pa0_ = *(aquct_data_.p0);
2018-01-04 08:50:04 -06:00
}
// use the thermodynamic state of the first active cell as a
// reference. there might be better ways to do this...
2018-10-30 09:50:36 -05:00
ElementContext elemCtx(ebos_simulator_);
auto elemIt = ebos_simulator_.gridView().template begin</*codim=*/0>();
elemCtx.updatePrimaryStencil(*elemIt);
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
const auto& iq0 = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
2018-01-04 08:50:04 -06:00
// Initialize a FluidState object first
FluidState fs_aquifer;
// We use the temperature of the first cell connected to the aquifer
// Here we copy the fluidstate of the first cell, so we do not accidentally mess up the reservoir fs
fs_aquifer.assign( iq0.fluidState() );
2018-01-04 08:50:04 -06:00
Eval temperature_aq, pa0_mean;
temperature_aq = fs_aquifer.temperature(0);
pa0_mean = pa0_;
Eval mu_w_aquifer = FluidSystem::waterPvt().viscosity(pvttableIdx, temperature_aq, pa0_mean);
mu_w_ = mu_w_aquifer.value();
}
// This function is for calculating the aquifer properties from equilibrium state with the reservoir
2018-04-26 09:22:26 -05:00
inline Scalar calculateReservoirEquilibrium()
2018-01-04 08:50:04 -06:00
{
// Since the global_indices are the reservoir index, we just need to extract the fluidstate at those indices
2018-04-26 09:22:26 -05:00
std::vector<Scalar> pw_aquifer;
Scalar water_pressure_reservoir;
2018-01-04 08:50:04 -06:00
2018-10-30 09:50:36 -05:00
ElementContext elemCtx(ebos_simulator_);
const auto& gridView = ebos_simulator_.gridView();
auto elemIt = gridView.template begin</*codim=*/0>();
const auto& elemEndIt = gridView.template end</*codim=*/0>();
for (; elemIt != elemEndIt; ++elemIt) {
const auto& elem = *elemIt;
elemCtx.updatePrimaryStencil(elem);
size_t cellIdx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
2018-10-30 09:50:36 -05:00
int idx = cellToConnectionIdx_[cellIdx];
if (idx < 0)
continue;
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
const auto& iq0 = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
const auto& fs = iq0.fluidState();
2018-04-26 09:22:26 -05:00
water_pressure_reservoir = fs.pressure(waterPhaseIdx).value();
2018-10-30 09:50:36 -05:00
rhow_[idx] = fs.density(waterPhaseIdx);
pw_aquifer.push_back( (water_pressure_reservoir - rhow_[idx].value()*gravity_()*(cell_depth_[idx] - aquct_data_.d0))*alphai_[idx] );
2018-01-04 08:50:04 -06:00
}
// We take the average of the calculated equilibrium pressures.
Scalar aquifer_pres_avg = std::accumulate(pw_aquifer.begin(), pw_aquifer.end(), 0.)/pw_aquifer.size();
return aquifer_pres_avg;
}
const Aquancon::AquanconOutput connection_;
std::vector<int> cellToConnectionIdx_;
}; // class AquiferCarterTracy
} // namespace Opm
#endif