opm-simulators/opm/core/wells/WellsManager.cpp

762 lines
33 KiB
C++
Raw Normal View History

2012-03-06 06:59:51 -06:00
/*
Copyright 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include "config.h"
#include <opm/core/wells/WellsManager.hpp>
2012-03-06 06:59:51 -06:00
#include <opm/core/grid.h>
#include <opm/core/wells.h>
#include <opm/core/well_controls.h>
2015-10-08 04:42:15 -05:00
#include <opm/common/ErrorMacros.hpp>
#include <opm/core/wells/WellCollection.hpp>
#include <opm/core/props/phaseUsageFromDeck.hpp>
2012-03-06 06:59:51 -06:00
#include <opm/parser/eclipse/EclipseState/Schedule/ScheduleEnums.hpp>
#include <algorithm>
#include <cassert>
2012-06-18 17:01:30 -05:00
#include <cmath>
#include <cstddef>
#include <map>
#include <string>
#include <utility>
#include <iostream>
2012-03-06 06:59:51 -06:00
2015-08-17 01:47:33 -05:00
namespace
{
static double invalid_alq = -1e100;
static double invalid_vfp = -2147483647;
} //Namespace
2012-03-06 06:59:51 -06:00
// Helper structs and functions for the implementation.
namespace WellsManagerDetail
2012-03-06 06:59:51 -06:00
{
namespace ProductionControl
2012-03-06 06:59:51 -06:00
{
namespace Details {
std::map<std::string, Mode>
init_mode_map() {
std::map<std::string, Mode> m;
m.insert(std::make_pair("ORAT", ORAT));
m.insert(std::make_pair("WRAT", WRAT));
m.insert(std::make_pair("GRAT", GRAT));
m.insert(std::make_pair("LRAT", LRAT));
m.insert(std::make_pair("CRAT", CRAT));
m.insert(std::make_pair("RESV", RESV));
m.insert(std::make_pair("BHP" , BHP ));
m.insert(std::make_pair("THP" , THP ));
m.insert(std::make_pair("GRUP", GRUP));
return m;
}
} // namespace Details
Mode mode(const std::string& control)
{
static std::map<std::string, Mode>
mode_map = Details::init_mode_map();
std::map<std::string, Mode>::iterator
p = mode_map.find(control);
if (p != mode_map.end()) {
return p->second;
}
else {
2013-08-28 06:59:03 -05:00
OPM_THROW(std::runtime_error, "Unknown well control mode = "
<< control << " in input file");
}
}
Mode mode(Opm::WellProducer::ControlModeEnum controlMode)
{
switch( controlMode ) {
case Opm::WellProducer::ORAT:
return ORAT;
case Opm::WellProducer::WRAT:
return WRAT;
case Opm::WellProducer::GRAT:
return GRAT;
case Opm::WellProducer::LRAT:
return LRAT;
case Opm::WellProducer::CRAT:
return CRAT;
case Opm::WellProducer::RESV:
return RESV;
case Opm::WellProducer::BHP:
return BHP;
case Opm::WellProducer::THP:
return THP;
case Opm::WellProducer::GRUP:
return GRUP;
default:
throw std::invalid_argument("unhandled enum value");
}
}
} // namespace ProductionControl
2012-03-06 06:59:51 -06:00
namespace InjectionControl
2012-03-06 06:59:51 -06:00
{
namespace Details {
std::map<std::string, Mode>
init_mode_map() {
std::map<std::string, Mode> m;
m.insert(std::make_pair("RATE", RATE));
m.insert(std::make_pair("RESV", RESV));
m.insert(std::make_pair("BHP" , BHP ));
m.insert(std::make_pair("THP" , THP ));
m.insert(std::make_pair("GRUP", GRUP));
return m;
}
} // namespace Details
Mode mode(const std::string& control)
{
static std::map<std::string, Mode>
mode_map = Details::init_mode_map();
std::map<std::string, Mode>::iterator
p = mode_map.find(control);
if (p != mode_map.end()) {
return p->second;
}
else {
2013-08-28 06:59:03 -05:00
OPM_THROW(std::runtime_error, "Unknown well control mode = "
<< control << " in input file");
}
}
Mode mode(Opm::WellInjector::ControlModeEnum controlMode)
{
switch ( controlMode ) {
case Opm::WellInjector::GRUP:
return GRUP;
case Opm::WellInjector::RESV:
return RESV;
case Opm::WellInjector::RATE:
return RATE;
case Opm::WellInjector::THP:
return THP;
case Opm::WellInjector::BHP:
return BHP;
default:
throw std::invalid_argument("unhandled enum value");
}
}
} // namespace InjectionControl
2012-03-06 06:59:51 -06:00
// Compute direction permutation corresponding to completion's
// direction. First two elements of return value are directions
// perpendicular to completion while last element is direction
// along completion.
inline std::array< std::array<double,3>::size_type, 3 >
2015-01-12 04:57:27 -06:00
directionIndices(const Opm::WellCompletion::DirectionEnum direction)
{
typedef std::array<double,3>::size_type idx_t;
typedef std::array<idx_t,3> permutation;
switch (direction) {
2015-01-12 04:57:27 -06:00
case Opm::WellCompletion::DirectionEnum::X:
return permutation {{ idx_t(1), idx_t(2), idx_t(0) }};
2015-01-12 04:57:27 -06:00
case Opm::WellCompletion::DirectionEnum::Y:
return permutation {{ idx_t(2), idx_t(0), idx_t(1) }};
2015-01-12 04:57:27 -06:00
case Opm::WellCompletion::DirectionEnum::Z:
return permutation {{ idx_t(0), idx_t(1), idx_t(2) }};
}
// All enum values should be handled above. Therefore
// we should never reach this one. Anyway for the sake
// of reduced warnings we throw an exception.
throw std::invalid_argument("unhandled enum value");
}
// Permute (diagonal) permeability components according to
// completion's direction.
inline std::array<double,3>
2015-01-12 04:57:27 -06:00
permComponents(const Opm::WellCompletion::DirectionEnum direction,
const double* perm)
{
const auto p = directionIndices(direction);
const std::array<double,3>::size_type d = 3;
std::array<double,3>
K = {{ perm[ p[0]*(d + 1) ] ,
perm[ p[1]*(d + 1) ] ,
perm[ p[2]*(d + 1) ] }};
return K;
}
// Permute cell's geometric extent according to completion's
// direction. Honour net-to-gross ratio.
//
// Note: 'extent' is intentionally accepted by modifiable value
// rather than reference-to-const to support NTG manipulation.
inline std::array<double,3>
2015-01-12 04:57:27 -06:00
effectiveExtent(const Opm::WellCompletion::DirectionEnum direction,
const double ntg,
std::array<double,3> extent)
{
// Vertical extent affected by net-to-gross ratio.
extent[2] *= ntg;
const auto p = directionIndices(direction);
std::array<double,3>
D = {{ extent[ p[0] ] ,
extent[ p[1] ] ,
extent[ p[2] ] }};
return D;
}
// Compute Peaceman's effective radius of single completion.
inline double
effectiveRadius(const std::array<double,3>& K,
const std::array<double,3>& D)
{
const double K01 = K[0] / K[1];
const double K10 = K[1] / K[0];
const double D0_sq = D[0] * D[0];
const double D1_sq = D[1] * D[1];
const double num = std::sqrt((std::sqrt(K10) * D0_sq) +
(std::sqrt(K01) * D1_sq));
const double den = std::pow(K01, 0.25) + std::pow(K10, 0.25);
// Note: Analytic constant 0.28 derived for infintely sized
// formation with repeating well placement.
return 0.28 * (num / den);
}
2012-03-06 06:59:51 -06:00
// Use the Peaceman well model to compute well indices.
// radius is the radius of the well.
// cubical contains [dx, dy, dz] of the cell.
// (Note that the well model asumes that each cell is a cuboid).
// cell_permeability is the permeability tensor of the given cell.
// returns the well index of the cell.
double
computeWellIndex(const double radius,
const std::array<double, 3>& cubical,
const double* cell_permeability,
const double skin_factor,
2015-01-12 04:57:27 -06:00
const Opm::WellCompletion::DirectionEnum direction,
const double ntg)
2012-03-06 06:59:51 -06:00
{
const std::array<double,3>& K =
permComponents(direction, cell_permeability);
const std::array<double,3>& D =
effectiveExtent(direction, ntg, cubical);
const double r0 = effectiveRadius(K, D);
const double Kh = std::sqrt(K[0] * K[1]) * D[2];
// Angle of completion exposed to flow. We assume centre
// placement so there's complete exposure (= 2\pi).
const double angle =
6.2831853071795864769252867665590057683943387987502116419498;
double rw = radius;
if (r0 < rw) {
std::cerr << "Completion radius exceeds effective radius\n"
<< "Reset to effective\n";
rw = r0;
}
// NOTE: The formula is originally derived and valid for
// Cartesian grids only.
return (angle * Kh) / (std::log(r0 / rw) + skin_factor);
2012-03-06 06:59:51 -06:00
}
} // anonymous namespace
namespace Opm
{
2012-03-09 07:25:52 -06:00
/// Default constructor.
WellsManager::WellsManager()
: w_(0), is_parallel_run_(false)
2012-03-09 07:25:52 -06:00
{
}
2013-07-28 06:34:13 -05:00
/// Construct from existing wells object.
WellsManager::WellsManager(struct Wells* W)
: w_(clone_wells(W)), is_parallel_run_(false)
{
}
/// Construct wells from deck.
WellsManager::WellsManager(const Opm::EclipseStateConstPtr eclipseState,
const size_t timeStep,
const UnstructuredGrid& grid,
const double* permeability)
: w_(0), is_parallel_run_(false)
2012-03-06 06:59:51 -06:00
{
init(eclipseState, timeStep, UgGridHelpers::numCells(grid),
UgGridHelpers::globalCell(grid), UgGridHelpers::cartDims(grid),
UgGridHelpers::dimensions(grid),
UgGridHelpers::cell2Faces(grid), UgGridHelpers::beginFaceCentroids(grid),
permeability);
2012-03-06 06:59:51 -06:00
}
2012-03-06 06:59:51 -06:00
/// Destructor.
WellsManager::~WellsManager()
{
destroy_wells(w_);
2012-03-06 06:59:51 -06:00
}
/// Does the "deck" define any wells?
bool WellsManager::empty() const
{
return (w_ == 0) || (w_->number_of_wells == 0);
}
2012-03-06 06:59:51 -06:00
/// Access the managed Wells.
/// The method is named similarly to c_str() in std::string,
/// to make it clear that we are returning a C-compatible struct.
const Wells* WellsManager::c_wells() const
{
return w_;
2012-03-06 06:59:51 -06:00
}
const WellCollection& WellsManager::wellCollection() const
{
return well_collection_;
}
2012-03-06 06:59:51 -06:00
bool WellsManager::conditionsMet(const std::vector<double>& well_bhp,
const std::vector<double>& well_reservoirrates_phase,
const std::vector<double>& well_surfacerates_phase)
{
return well_collection_.conditionsMet(well_bhp,
well_reservoirrates_phase,
well_surfacerates_phase);
}
2012-03-06 06:59:51 -06:00
/// Applies explicit reinjection controls. This must be called at each timestep to be correct.
/// \param[in] well_reservoirrates_phase
/// A vector containing reservoir rates by phase for each well.
/// Is assumed to be ordered the same way as the related Wells-struct,
/// with all phase rates of a single well adjacent in the array.
/// \param[in] well_surfacerates_phase
/// A vector containing surface rates by phase for each well.
/// Is assumed to be ordered the same way as the related Wells-struct,
/// with all phase rates of a single well adjacent in the array.
void WellsManager::applyExplicitReinjectionControls(const std::vector<double>& well_reservoirrates_phase,
const std::vector<double>& well_surfacerates_phase)
{
well_collection_.applyExplicitReinjectionControls(well_reservoirrates_phase, well_surfacerates_phase);
}
void WellsManager::setupCompressedToCartesian(const int* global_cell, int number_of_cells,
std::map<int,int>& cartesian_to_compressed ) {
// global_cell is a map from compressed cells to Cartesian grid cells.
// We must make the inverse lookup.
if (global_cell) {
for (int i = 0; i < number_of_cells; ++i) {
cartesian_to_compressed.insert(std::make_pair(global_cell[i], i));
}
}
else {
for (int i = 0; i < number_of_cells; ++i) {
cartesian_to_compressed.insert(std::make_pair(i, i));
}
}
}
void WellsManager::setupWellControls(std::vector<WellConstPtr>& wells, size_t timeStep,
std::vector<std::string>& well_names, const PhaseUsage& phaseUsage,
const std::vector<int>& wells_on_proc) {
int well_index = 0;
auto well_on_proc = wells_on_proc.begin();
for (auto wellIter= wells.begin(); wellIter != wells.end(); ++wellIter, ++well_on_proc) {
if( ! *well_on_proc )
{
// Wells not stored on the process are not in the list
continue;
}
WellConstPtr well = (*wellIter);
if (well->getStatus(timeStep) == WellCommon::STOP) {
2015-01-07 03:33:20 -06:00
// STOPed wells are kept in the well list but marked as stopped.
well_controls_stop_well(w_->ctrls[well_index]);
}
if (well->getStatus(timeStep) == WellCommon::SHUT) {
//SHUT wells are not added to the well list
continue;
}
if (well->isInjector(timeStep)) {
const WellInjectionProperties& injectionProperties = well->getInjectionProperties(timeStep);
int ok = 1;
int control_pos[5] = { -1, -1, -1, -1, -1 };
clear_well_controls(well_index, w_);
if (injectionProperties.hasInjectionControl(WellInjector::RATE)) {
control_pos[WellsManagerDetail::InjectionControl::RATE] = well_controls_get_num(w_->ctrls[well_index]);
double distr[3] = { 0.0, 0.0, 0.0 };
WellInjector::TypeEnum injectorType = injectionProperties.injectorType;
if (injectorType == WellInjector::TypeEnum::WATER) {
distr[phaseUsage.phase_pos[BlackoilPhases::Aqua]] = 1.0;
} else if (injectorType == WellInjector::TypeEnum::OIL) {
distr[phaseUsage.phase_pos[BlackoilPhases::Liquid]] = 1.0;
} else if (injectorType == WellInjector::TypeEnum::GAS) {
distr[phaseUsage.phase_pos[BlackoilPhases::Vapour]] = 1.0;
}
ok = append_well_controls(SURFACE_RATE,
injectionProperties.surfaceInjectionRate,
2015-08-17 01:47:33 -05:00
invalid_alq,
invalid_vfp,
distr,
well_index,
w_);
}
if (ok && injectionProperties.hasInjectionControl(WellInjector::RESV)) {
control_pos[WellsManagerDetail::InjectionControl::RESV] = well_controls_get_num(w_->ctrls[well_index]);
double distr[3] = { 0.0, 0.0, 0.0 };
WellInjector::TypeEnum injectorType = injectionProperties.injectorType;
if (injectorType == WellInjector::TypeEnum::WATER) {
distr[phaseUsage.phase_pos[BlackoilPhases::Aqua]] = 1.0;
} else if (injectorType == WellInjector::TypeEnum::OIL) {
distr[phaseUsage.phase_pos[BlackoilPhases::Liquid]] = 1.0;
} else if (injectorType == WellInjector::TypeEnum::GAS) {
distr[phaseUsage.phase_pos[BlackoilPhases::Vapour]] = 1.0;
}
ok = append_well_controls(RESERVOIR_RATE,
injectionProperties.reservoirInjectionRate,
2015-08-17 01:47:33 -05:00
invalid_alq,
invalid_vfp,
distr,
well_index,
w_);
}
if (ok && injectionProperties.hasInjectionControl(WellInjector::BHP)) {
control_pos[WellsManagerDetail::InjectionControl::BHP] = well_controls_get_num(w_->ctrls[well_index]);
ok = append_well_controls(BHP,
2015-07-08 10:40:10 -05:00
injectionProperties.BHPLimit,
2015-08-17 01:47:33 -05:00
invalid_alq,
invalid_vfp,
NULL,
well_index,
w_);
}
if (ok && injectionProperties.hasInjectionControl(WellInjector::THP)) {
2015-08-11 09:26:56 -05:00
control_pos[WellsManagerDetail::InjectionControl::THP] = well_controls_get_num(w_->ctrls[well_index]);
2015-08-11 05:51:18 -05:00
const double thp_limit = injectionProperties.THPLimit;
const int vfp_number = injectionProperties.VFPTableNumber;
ok = append_well_controls(THP,
thp_limit,
2015-08-17 01:47:33 -05:00
invalid_alq,
2015-08-11 05:51:18 -05:00
vfp_number,
NULL,
well_index,
w_);
}
if (!ok) {
OPM_THROW(std::runtime_error, "Failure occured appending controls for well " << well_names[well_index]);
}
if (injectionProperties.controlMode != WellInjector::CMODE_UNDEFINED) {
WellsManagerDetail::InjectionControl::Mode mode = WellsManagerDetail::InjectionControl::mode( injectionProperties.controlMode );
int cpos = control_pos[mode];
if (cpos == -1 && mode != WellsManagerDetail::InjectionControl::GRUP) {
OPM_THROW(std::runtime_error, "Control not specified in well " << well_names[well_index]);
}
2014-10-17 01:05:13 -05:00
set_current_control(well_index, cpos, w_);
}
// Set well component fraction.
double cf[3] = { 0.0, 0.0, 0.0 };
{
WellInjector::TypeEnum injectorType = injectionProperties.injectorType;
if (injectorType == WellInjector::WATER) {
if (!phaseUsage.phase_used[BlackoilPhases::Aqua]) {
OPM_THROW(std::runtime_error, "Water phase not used, yet found water-injecting well.");
}
cf[phaseUsage.phase_pos[BlackoilPhases::Aqua]] = 1.0;
} else if (injectorType == WellInjector::OIL) {
if (!phaseUsage.phase_used[BlackoilPhases::Liquid]) {
OPM_THROW(std::runtime_error, "Oil phase not used, yet found oil-injecting well.");
}
cf[phaseUsage.phase_pos[BlackoilPhases::Liquid]] = 1.0;
} else if (injectorType == WellInjector::GAS) {
if (!phaseUsage.phase_used[BlackoilPhases::Vapour]) {
OPM_THROW(std::runtime_error, "Gas phase not used, yet found gas-injecting well.");
}
cf[phaseUsage.phase_pos[BlackoilPhases::Vapour]] = 1.0;
}
std::copy(cf, cf + phaseUsage.num_phases, w_->comp_frac + well_index*phaseUsage.num_phases);
}
}
if (well->isProducer(timeStep)) {
// Add all controls that are present in well.
// First we must clear existing controls, in case the
// current WCONPROD line is modifying earlier controls.
const WellProductionProperties& productionProperties = well->getProductionProperties(timeStep);
int control_pos[9] = { -1, -1, -1, -1, -1, -1, -1, -1, -1 };
int ok = 1;
clear_well_controls(well_index, w_);
if (ok && productionProperties.hasProductionControl(WellProducer::ORAT)) {
if (!phaseUsage.phase_used[BlackoilPhases::Liquid]) {
OPM_THROW(std::runtime_error, "Oil phase not active and ORAT control specified.");
}
control_pos[WellsManagerDetail::ProductionControl::ORAT] = well_controls_get_num(w_->ctrls[well_index]);
double distr[3] = { 0.0, 0.0, 0.0 };
distr[phaseUsage.phase_pos[BlackoilPhases::Liquid]] = 1.0;
ok = append_well_controls(SURFACE_RATE,
2015-07-08 10:40:10 -05:00
-productionProperties.OilRate,
2015-08-17 01:47:33 -05:00
invalid_alq,
invalid_vfp,
distr,
2015-08-17 01:47:33 -05:00
well_index,
w_);
}
if (ok && productionProperties.hasProductionControl(WellProducer::WRAT)) {
if (!phaseUsage.phase_used[BlackoilPhases::Aqua]) {
OPM_THROW(std::runtime_error, "Water phase not active and WRAT control specified.");
}
control_pos[WellsManagerDetail::ProductionControl::WRAT] = well_controls_get_num(w_->ctrls[well_index]);
double distr[3] = { 0.0, 0.0, 0.0 };
distr[phaseUsage.phase_pos[BlackoilPhases::Aqua]] = 1.0;
ok = append_well_controls(SURFACE_RATE,
-productionProperties.WaterRate,
2015-08-17 01:47:33 -05:00
invalid_alq,
invalid_vfp,
distr,
well_index,
w_);
}
if (ok && productionProperties.hasProductionControl(WellProducer::GRAT)) {
if (!phaseUsage.phase_used[BlackoilPhases::Vapour]) {
OPM_THROW(std::runtime_error, "Gas phase not active and GRAT control specified.");
}
control_pos[WellsManagerDetail::ProductionControl::GRAT] = well_controls_get_num(w_->ctrls[well_index]);
double distr[3] = { 0.0, 0.0, 0.0 };
distr[phaseUsage.phase_pos[BlackoilPhases::Vapour]] = 1.0;
ok = append_well_controls(SURFACE_RATE,
-productionProperties.GasRate,
2015-08-17 01:47:33 -05:00
invalid_alq,
invalid_vfp,
distr,
well_index,
w_);
}
if (ok && productionProperties.hasProductionControl(WellProducer::LRAT)) {
if (!phaseUsage.phase_used[BlackoilPhases::Aqua]) {
OPM_THROW(std::runtime_error, "Water phase not active and LRAT control specified.");
}
if (!phaseUsage.phase_used[BlackoilPhases::Liquid]) {
OPM_THROW(std::runtime_error, "Oil phase not active and LRAT control specified.");
}
control_pos[WellsManagerDetail::ProductionControl::LRAT] = well_controls_get_num(w_->ctrls[well_index]);
double distr[3] = { 0.0, 0.0, 0.0 };
distr[phaseUsage.phase_pos[BlackoilPhases::Aqua]] = 1.0;
distr[phaseUsage.phase_pos[BlackoilPhases::Liquid]] = 1.0;
ok = append_well_controls(SURFACE_RATE,
2015-08-17 01:47:33 -05:00
-productionProperties.LiquidRate,
invalid_alq,
invalid_vfp,
distr,
well_index,
w_);
}
if (ok && productionProperties.hasProductionControl(WellProducer::RESV)) {
control_pos[WellsManagerDetail::ProductionControl::RESV] = well_controls_get_num(w_->ctrls[well_index]);
double distr[3] = { 1.0, 1.0, 1.0 };
ok = append_well_controls(RESERVOIR_RATE,
2015-08-17 01:47:33 -05:00
-productionProperties.ResVRate,
invalid_alq,
invalid_vfp,
distr,
well_index,
w_);
}
2015-07-08 10:40:10 -05:00
if (ok && productionProperties.hasProductionControl(WellProducer::THP)) {
const double thp_limit = productionProperties.THPLimit;
const double alq_value = productionProperties.ALQValue;
const int vfp_number = productionProperties.VFPTableNumber;
control_pos[WellsManagerDetail::ProductionControl::THP] = well_controls_get_num(w_->ctrls[well_index]);
ok = append_well_controls(THP,
thp_limit,
alq_value,
vfp_number,
NULL,
well_index,
w_);
}
if (ok) {
// Always append a BHP control.
// If no explicit BHP control given, use a 1 atm control.
const bool has_explicit_limit = productionProperties.hasProductionControl(WellProducer::BHP);
const double bhp_limit = has_explicit_limit ? productionProperties.BHPLimit : unit::convert::from(1.0, unit::atm);
control_pos[WellsManagerDetail::ProductionControl::BHP] = well_controls_get_num(w_->ctrls[well_index]);
ok = append_well_controls(BHP,
bhp_limit,
2015-08-17 01:47:33 -05:00
invalid_alq,
invalid_vfp,
NULL,
well_index,
w_);
}
if (!ok) {
OPM_THROW(std::runtime_error, "Failure occured appending controls for well " << well_names[well_index]);
}
if (productionProperties.controlMode != WellProducer::CMODE_UNDEFINED) {
WellsManagerDetail::ProductionControl::Mode mode = WellsManagerDetail::ProductionControl::mode(productionProperties.controlMode);
int cpos = control_pos[mode];
if (cpos == -1 && mode != WellsManagerDetail::ProductionControl::GRUP) {
OPM_THROW(std::runtime_error, "Control mode type " << mode << " not present in well " << well_names[well_index]);
}
else {
set_current_control(well_index, cpos, w_);
}
}
// Set well component fraction to match preferred phase for the well.
double cf[3] = { 0.0, 0.0, 0.0 };
{
switch (well->getPreferredPhase()) {
case Phase::WATER:
if (!phaseUsage.phase_used[BlackoilPhases::Aqua]) {
OPM_THROW(std::runtime_error, "Water phase not used, yet found water-preferring well.");
}
cf[phaseUsage.phase_pos[BlackoilPhases::Aqua]] = 1.0;
break;
case Phase::OIL:
if (!phaseUsage.phase_used[BlackoilPhases::Liquid]) {
OPM_THROW(std::runtime_error, "Oil phase not used, yet found oil-preferring well.");
}
cf[phaseUsage.phase_pos[BlackoilPhases::Liquid]] = 1.0;
break;
case Phase::GAS:
if (!phaseUsage.phase_used[BlackoilPhases::Vapour]) {
OPM_THROW(std::runtime_error, "Gas phase not used, yet found gas-preferring well.");
}
cf[phaseUsage.phase_pos[BlackoilPhases::Vapour]] = 1.0;
break;
default:
OPM_THROW(std::logic_error, "Unknown preferred phase: " << well->getPreferredPhase());
}
std::copy(cf, cf + phaseUsage.num_phases, w_->comp_frac + well_index*phaseUsage.num_phases);
}
}
well_index++;
}
}
void WellsManager::addChildGroups(GroupTreeNodeConstPtr parentNode, ScheduleConstPtr schedule, size_t timeStep, const PhaseUsage& phaseUsage) {
for (auto childIter = parentNode->begin(); childIter != parentNode->end(); ++childIter) {
GroupTreeNodeConstPtr childNode = (*childIter).second;
well_collection_.addGroup(schedule->getGroup(childNode->name()), parentNode->name(), timeStep, phaseUsage);
addChildGroups(childNode, schedule, timeStep, phaseUsage);
}
}
void WellsManager::setupGuideRates(std::vector<WellConstPtr>& wells, const size_t timeStep, std::vector<WellData>& well_data, std::map<std::string, int>& well_names_to_index)
{
for (auto wellIter = wells.begin(); wellIter != wells.end(); ++wellIter ) {
WellConstPtr well = *wellIter;
const int wix = well_names_to_index[well->name()];
WellNode& wellnode = *well_collection_.getLeafNodes()[wix];
if (well->getGuideRatePhase(timeStep) != GuideRate::UNDEFINED) {
if (well_data[wix].type == PRODUCER) {
wellnode.prodSpec().guide_rate_ = well->getGuideRate(timeStep);
if (well->getGuideRatePhase(timeStep) == GuideRate::OIL) {
wellnode.prodSpec().guide_rate_type_ = ProductionSpecification::OIL;
} else {
OPM_THROW(std::runtime_error, "Guide rate type " << GuideRate::GuideRatePhaseEnum2String(well->getGuideRatePhase(timeStep)) << " specified for producer "
<< well->name() << " in WGRUPCON, cannot handle.");
}
} else if (well_data[wix].type == INJECTOR) {
wellnode.injSpec().guide_rate_ = well->getGuideRate(timeStep);
if (well->getGuideRatePhase(timeStep) == GuideRate::RAT) {
wellnode.injSpec().guide_rate_type_ = InjectionSpecification::RAT;
} else {
OPM_THROW(std::runtime_error, "Guide rate type " << GuideRate::GuideRatePhaseEnum2String(well->getGuideRatePhase(timeStep)) << " specified for injector "
<< well->name() << " in WGRUPCON, cannot handle.");
}
} else {
OPM_THROW(std::runtime_error, "Unknown well type " << well_data[wix].type << " for well " << well->name());
}
}
}
}
2012-03-06 06:59:51 -06:00
} // namespace Opm