opm-simulators/examples/tutorialproblem_coupled.hh

251 lines
8.5 KiB
C++
Raw Normal View History

// $Id$
/*****************************************************************************
* Copyright (C) 2008-2009 by Melanie Darcis *
* Copyright (C) 2009 by Andreas Lauser *
* Institute of Hydraulic Engineering *
* University of Stuttgart, Germany *
* email: <givenname>.<name>@iws.uni-stuttgart.de *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version, as long as this copyright notice *
* is included in its original form. *
* *
* This program is distributed WITHOUT ANY WARRANTY. *
*****************************************************************************/
#ifndef DUNE_TUTORIALPROBLEM_COUPLED_HH
#define DUNE_TUTORIALPROBLEM_COUPLED_HH
// fluid properties
#include <dumux/material/fluids/water.hh>
#include <dumux/material/fluids/oil.hh>
// the numerical model
#include <dumux/boxmodels/2p/2pboxmodel.hh>
// the grid used
#include <dune/grid/yaspgrid.hh>
#include <dune/grid/io/file/dgfparser/dgfyasp.hh>
// the soil to be used
#include "tutorialsoil_coupled.hh"
namespace Dune
{
// forward declaration of the problem class
template <class TypeTag>
class TutorialProblemCoupled;
//////////
// Specify the properties of the problem
//////////
namespace Properties
{
// create a new type tag for the problem
NEW_TYPE_TAG(TutorialProblemCoupled, INHERITS_FROM(BoxTwoP));
// Set the "Problem" property
SET_PROP(TutorialProblemCoupled, Problem)
{
typedef Dune::TutorialProblemCoupled<TTAG(TutorialProblemCoupled)> type;
};
// Set the grid type
SET_TYPE_PROP(TutorialProblemCoupled, Grid, Dune::YaspGrid<2>);
// Set the wetting phase
SET_TYPE_PROP(TutorialProblemCoupled, WettingPhase, Dune::Water);
// Set the non-wetting phase
SET_TYPE_PROP(TutorialProblemCoupled, NonwettingPhase, Dune::Oil);
// Set the soil properties
SET_PROP(TutorialProblemCoupled, Soil)
{
private:
typedef typename GET_PROP_TYPE(TypeTag, PTAG(Grid)) Grid;
typedef typename GET_PROP_TYPE(TypeTag, PTAG(Scalar)) Scalar;
public:
typedef Dune::TutorialSoil<Grid, Scalar> type;
};
// Enable gravity
SET_BOOL_PROP(TutorialProblemCoupled, EnableGravity, true);
}
/*!
* \ingroup TwoPBoxProblems
* \brief The problem used for the tutorial of the coupled models
*/
template <class TypeTag = TTAG(TutorialProblemCoupled) >
class TutorialProblemCoupled : public TwoPBoxProblem<TypeTag,
TutorialProblemCoupled<TypeTag> >
{
typedef TutorialProblemCoupled<TypeTag> ThisType;
typedef TwoPBoxProblem<TypeTag, ThisType> ParentType;
typedef typename GET_PROP_TYPE(TypeTag, PTAG(GridView)) GridView;
// Grid and world dimension
enum {
dim = GridView::dimension,
dimWorld = GridView::dimensionworld,
};
typedef typename GridView::Grid::ctype CoordScalar;
typedef typename GET_PROP_TYPE(TypeTag, PTAG(Scalar)) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, PTAG(TwoPIndices)) Indices;
typedef typename GridView::template Codim<0>::Entity Element;
typedef typename GridView::template Codim<dim>::Entity Vertex;
typedef typename GridView::IntersectionIterator IntersectionIterator;
typedef Dune::FieldVector<CoordScalar, dim> LocalPosition;
typedef Dune::FieldVector<CoordScalar, dimWorld> GlobalPosition;
typedef typename GET_PROP(TypeTag, PTAG(SolutionTypes)) SolutionTypes;
typedef typename SolutionTypes::PrimaryVarVector PrimaryVarVector;
typedef typename SolutionTypes::BoundaryTypeVector BoundaryTypeVector;
typedef typename GET_PROP_TYPE(TypeTag, PTAG(FVElementGeometry)) FVElementGeometry;
public:
TutorialProblemCoupled(const GridView &gridView)
: ParentType(gridView)
{
}
/*!
* \name Problem parameters
*/
// \{
/*!
* \brief Returns the temperature within the domain.
*
* We use 10°C...
*/
Scalar temperature() const
{ return 283.15; };
// \}
/*!
* \name Boundary conditions
*/
// \{
/*!
* \brief Specifies which kind of boundary condition should be
* used for which equation on a given boundary segment.
*/
void boundaryTypes(BoundaryTypeVector &values,
const Element &element,
const FVElementGeometry &fvElemGeom,
const IntersectionIterator &isIt,
int scvIdx,
int boundaryFaceIdx) const
{
const GlobalPosition &pos = element.geometry().corner(scvIdx);
if (pos[0] < eps_)
// dirichlet conditions on left boundary
values = BoundaryConditions::dirichlet;
else
// neuman for the remaining boundaries
values = BoundaryConditions::neumann;
}
/*!
* \brief Evaluate the boundary conditions for a dirichlet
* boundary segment.
*
* For this method, the \a values parameter stores primary variables.
*/
void dirichlet(PrimaryVarVector &values,
const Element &element,
const FVElementGeometry &fvElemGeom,
const IntersectionIterator &isIt,
int scvIdx,
int boundaryFaceIdx) const
{
values[Indices::pW] = 200.0e3; // 200 000 Pa = 2 bar
values[Indices::sN] = 1.0; // 100 % oil saturation
}
/*!
* \brief Evaluate the boundary conditions for a neumann
* boundary segment.
*
* For this method, the \a values parameter stores the mass flux
* in normal direction of each phase. Negative values mean influx.
*/
void neumann(PrimaryVarVector &values,
const Element &element,
const FVElementGeometry &fvElemGeom,
const IntersectionIterator &isIt,
int scvIdx,
int boundaryFaceIdx) const
{
const GlobalPosition &pos = element.geometry().corner(scvIdx);
Scalar right = this->bboxMax()[0];
if (pos[0] > right - eps_) {
// outflow of 0.3 g/(m * s) oil on the right boundary of the
// domain
values[Indices::phase2Mass(Indices::wPhase)] = 0;
values[Indices::phase2Mass(Indices::nPhase)] = 0.3e-3;
} else {
// no-flow on the remaining neumann-boundaries
values[Indices::phase2Mass(Indices::wPhase)] = 0;
values[Indices::phase2Mass(Indices::nPhase)] = 0;
}
}
// \}
/*!
* \name Volume terms
*/
// \{
/*!
* \brief Evaluate the initial value for a control volume.
*
* For this method, the \a values parameter stores primary
* variables.
*/
void initial(PrimaryVarVector &values,
const Element &element,
const FVElementGeometry &fvElemGeom,
int scvIdx) const
{
values[Indices::pW] = 200.0e3; // 200 000 Pa = 2 bar
values[Indices::sN] = 1.0;
}
/*!
* \brief Evaluate the source term for all phases within a given
* sub-control-volume.
*
* For this method, the \a values parameter stores the rate mass
* generated or annihilate per volume unit. Positive values mean
* that mass is created, negative ones mean that it vanishes.
*/
void source(PrimaryVarVector &values,
const Element &element,
const FVElementGeometry &,
int subControlVolumeIdx) const
{
values[Indices::phase2Mass(Indices::wPhase)] = 0.0;
values[Indices::phase2Mass(Indices::nPhase)] = 0.0;
}
// \}
private:
static const Scalar eps_ = 3e-6;
};
} //end namespace
#endif